https://www.selleckchem.com/products/Vorinostat-saha.html The intra -and inter-observer agreement using the planning software was significantly better when the ECA was applied, compared to the Escudé formula (p  less then  0.01). As a reference, the predicted insertion depth was compared to the actual insertion depth measured on post-operative images. The mean absolute error was |2.36| (|1.11|) mm in case of the Escudé approach and |1.19| (|0.92|) mm in case of the ECA. The use of a new planning software that allows three-dimensional handling, integrating the diameter and width of the basal turn (ECA formula), resulted in the most accurate predictions of the electrode insertion depths.Excessive nitrogen (N) input and irrigation exacerbate N leaching in winter wheat production in the North China Plain (NCP). To explore the optimal N for better N remobilization and higher N utilization of wheat under water-saving irrigation will be conductive to less environmental contamination. A field experiment was conducted at 300 (N300), 240 (N240), 180 (N180), and 0 (N0) kg N ha-1 of N application under supplemental irrigation (SI) that brought the relative soil water content (RSWC) to 70% at jointing and 65% at anthesis. Compared with N0, N180 improved the free amino acid content in the flag leaf and grain after anthesis, dry matter and plant N accumulation at maturity, N translocation amount of vegetable organs and its contribution to grain from anthesis to maturity. Compared to N240 and N300, N180 increased the N translocation efficiency of vegetable organs, and reduced the soil NO3-N residue in the 60-180 cm soil layer, which contributing to no significant reduction in grain yield and grain protein yield, but higher grain N recovery efficiency (GREN), N recovery efficiency (REN), and N partial factor productivity (PFPN). Positive relationships were found between leaf N translocation efficiency and grain yield, grain protein yield, PFPN, GREN, and REN. Therefore, N180 is appr