https://www.selleckchem.com/products/Raltitrexed.html There are two most heavily used markers of cell proliferation, thymidine analogues 5-bromo-2'-deoxyuridine (BrdU) and 5-ethynyl-2'-deoxyuridine (EdU) that are incorporated into the DNA during its synthesis. In neurosciences, they are often used consecutively in the same animal to detect neuronal populations arising at multiple time points, their migration and incorporation. The effectivity of these markers, however, is not well established. Here, we studied the effectivity of equimolar doses of BrdU and EdU to label new cells and looked for the dose that will label the highest number of proliferating cells in the neurogenic ventricular zone (VZ) of adult songbirds. We found that, in male zebra finches (Taeniopygia guttata), the equimolar doses of BrdU and EdU did not label the same number of cells, with BrdU being more effective than EdU. Similarly, in liver, BrdU was more effective. The saturation of the detected brain cells occurred at 50 mg/kg BrdU and above 41 mg/kg EdU. Higher dose of 225 mg/kg BrdU or the equimolar dose of EdU did not result in any further significant increases. These results show that both markers are reliable for the detection of proliferating cells in birds, but the numbers obtained with BrdU and EdU should not be compared.Eating more quickly and consuming foods with a higher energy-intake-rate (EIR kcal/min) is associated with greater energy intake and adiposity. However, it remains unclear whether individuals who eat more quickly are more likely to consume foods with higher EIR. We investigated the overlap between self-reported eating rate (SRER) and the consumption of higher EIR foods, and their combined impact on daily energy intake and adiposity in a population-based Asian cohort (n = 7011; 21-75y). Food consumption was assessed using a validated Food Frequency Questionnaire. Moderated regression with simple slope analysis was conducted to evaluate whether SRER modified the associat