Through exploring price characteristics of carbon futures products in EU ET, this paper aims to provide China's policy makers with meaningful materials and references for understanding how a carbon trading market can be established and well regulated. Based on the dataset comprising of multiple sources including Euro stoxx600 index, coal and crude oil prices, natural gas prices and European clean energy company stock prices, etc., this paper uses BP neural network model to simulate the long-term trends of carbon futures prices in six scenarios that represent the typical features of a carbon trading market. The results show that (1) the magnitude of economic development's effect on carbon price is the largest among other factors, with the shortest duration; (2) in comparison, the effect of black energy consumption is weaker, but its lasting duration is the longest; (3) the impact of clean energy development on carbon price is similar to that of black energy, but the effect magnitude and lasting duration are relatively smaller. These findings suggest three viable directions for the development of China's carbon trading market in future i.e. adjusting total quotas in accordance with economic development, establishing market price stabilization mechanism, and developing clean energy. The novelty of this paper is to simulate the long-term trend of carbon prices by constructing a carbon price prediction system. In this study, 6 BTRs and 9 BTHs were detected in indoor dust samples collected from a typical e-waste dismantling area and adjacent residential areas, as well as from a control urban area. The median ∑BTRs (the total concentrations of BTRs) in e-waste dismantling workshop dust (3830 ng/g) was up to about 21 and 17 times higher than those in the local residential house dust (180 ng/g) and the control urban residential house dust (231 ng/g), respectively. Similarly, significantly higher ∑BTHs (the total concentrations of BTHs) were also found in indoor dust from e-waste workshops (median 2070 ng/g; range 590-4430 ng/g) compared to the local residential houses (823 ng/g; 268-3350 ng/g) and the control urban residential houses (930 ng/g; 400-3650 ng/g). These results indicate that e-waste dismantling activities contribute to considerable residues of BTRs and BTHs in indoor dust. Benzotriazole (BTR), benzothiazole (BTH) and 2-hydroxy-benzothiazole (2-OH-BTH) were identified as the predominant compounds across three types of dust samples, cumulatively representing over 80% of ∑BTs (the sum of ∑BTRs and ∑BTHs). The different applications of BTRs and BTHs in e-products were clarified based on correlations analysis. The estimated daily intakes (EDIs) of BTRs and BTHs through dust intake for occupational workers were much higher than those for local and urban residents, implying that a potentially high risk can be posed to occupational workers. Imidacloprid is the most widely used neonicotinoid insecticide and has been reported to pose a threat to ecological security and human health. Therefore, simple-to-operate and highly sensitive methods for the detection of trace levels of imidacloprid are necessary. Here, we isolated two phage-borne peptides that compete with imidacloprid to bind the monoclonal antibody (mAb) 3D11 from phage display peptide libraries. A phage-enzyme-linked immunosorbent assay (P-ELISA) and two phage time-resolved fluoroimmunoassays (P-TRFIAs) for the detection of imidacloprid were developed using the phage-borne peptides as substitutes for chemically synthesized antigens. After systematic optimization, the half-maximum inhibition concentrations (IC50) of the P-ELISA, P-TRFIA-1, and P-TRFIA-2 were 0.067 ng mL-1, 0.085 ng mL-1, and 0.056 ng mL-1, respectively. Based on their IC50 values, the sensitivities of the P-ELISA and P-TRFIAs were more than four times greater than those of previous immunoassays. Additionally, the immunoassays showed satisfactory recovery in the detection of spiked samples and good correlation with high performance liquid chromatography (HPLC) for the detection of samples containing incurred residues. The common use of sewage sludge (SSL)-derived biochar can be limited due to contaminants present in SSL, which may affect SSL-derived biochar toxicity. We propose the reduction of SSL-derived biochar toxicity by it co-pyrolysis with biomass and in CO2 atmosphere. Ecotoxicity of biochars produced at 500, 600, and 700 °C from SSL and SSL with the addition of willow (at a ratio of SSLwillow - 82 and 64, w/w) in an atmosphere of N2 or CO2 were investigated. The toxicity of aqueous extracts derived from the biochars (Lepidium sativum - Elongation test, Vibrio fischeri - Microtox) or solid-phase toxicity (Lepidium sativum - Phytotoxkit F, Folsomia candida - Collembolan test) was also studied. SSL-derived biochar produced at N2 atmosphere usually was toxic for all tested organisms. Co-pyrolysis of mixed feedstock reduced the toxicity of the produced biochar. In the case of biochars produced from SSL and willow under N2 atmosphere decrease in inhibition of F. candida reproduction (from 27 to 58%) or its stimulation (from 7 to 30%) in comparison to SSL alone derived biochar, was observed. https://www.selleckchem.com/products/pf-06821497.html Co-pyrolysis of SSL with willow significantly reduced the toxicity of extracts the SSL-derived biochar towards L. sativum. The aqueous extracts obtained from the biochars produced at temperatures of 500 and 600 °C with willow addition were also less toxic to V. fischeri than the biochars produced from SSL alone. The change of carrier gas from N2 to CO2, regardless of the feedstock used, in most cases reduced toxicity or positively affected the test organisms. This was probably caused by changes in the physicochemical properties and content of contaminants in the biochars produced in an atmosphere of CO2, compared to N2. An exception was root growth inhibition in the solid phase tests where no significant differences were found between biochars produced in N2 and CO2. Spring water chemistry is influenced by many factors, including geology, climate, vegetation and land use, which determine groundwater residence times and water-rock interaction. Changes in water chemistry can have a profound impact on their associated ecosystems. To protect these ecosystems and to evaluate possible changes, knowledge of the underlying processes and dynamics is important. We collected water samples at 20 locations during 5 campaigns within the water catchment area of the upper Schönmünz river in the Black Forest National Park, Southwest Germany and analyzed them hydro-chemically for their contents of inorganic constituents, organic carbon content, fluorescence properties as well as several physico chemical field parameters and spring discharge. Results show that water chemistry is strongly dependent on geology and that the response of dissolved organic carbon to changes in hydraulic conditions is highly dynamic. Due to increased flow through the upper soil layer during and after rain events, more organic carbon is extracted from the soil and transported with the water.