https://www.selleckchem.com/products/gsk2126458.html Mean ± standard error of the mean (SEM) of the tumor volume was not significantly different between the two groups (CO2-treated group, 1.178±0.450 cm3; control group, 1.368±0.295 cm3; P=0.485). Mean ± SEM of SUVmax, TLR, MTV (cm3) and TLG were significantly lower in the CO2-treated group compared with the control group (0.880±0.095 vs. 1.253±0.071, P=0.015; 1.063±0.147361 vs. 1.455±0.078, P=0.041; 0.353±0.139 vs. 1.569±0.438, P=0.015; 0.182±0.070 vs. 1.028±0.338, P=0.015), respectively. TMR was not significantly different between the two groups (4.520±0.503 vs. 5.504±0.310; P=0.240). In conclusion, 18F-FMISO PET revealed that percutaneous CO2 treatment improved intratumoral hypoxia in vivo. This technique enables assessment of the therapeutic effect in CO2 treatment by imaging, and may contribute to its clinical application.Ovarian carcinoma is the second most common malignant tumor of the female reproductive system and an notable cause of cancer death. The detection and diagnosis of early ovarian carcinomas are still clinical challenges, which calls for imaging studies using early ovarian carcinoma animal models. The present study aimed to optimize the 7,12-dimethylbenz(a)anthracene (DMBA)-induced model of rat ovarian tumors by investigating the delivery methods, induction dose and time of DMBA exposure, and explored the morphological features of tumors using MRI. Three schemes were performed. In scheme one the ovary was covered with absorbable hemostatic gauze loaded with a high concentration of liquid DMBA. For this scheme, 150 Sprague-Dawley rats were divided into three groups depending on the DMBA dose (1.0, 2.0 and 3.0 mg). In scheme two DMBA solution was injected under the ovarian capsule. For this scheme, 159 rats were divided into 0.5, 1.0 and 1.5 mg DMBA groups. In scheme three the ovary was covered with absorbable gauze loaded with a high concentration of solid DMBA. For this scheme 161 rats were divide