The results show that the difference in device equivalent series resistance (ESR) due to interfacial resistance between electrode and current collector was much lower than expected and thus similar or lower compared to other studies with a aqueous supercapacitors. This indicates that electrode coated paper separator substrates could be a promising approach and a possible route for manufacturing of low-cost, environmentally friendly and metal-free energy storage devices.As the miniaturization trend of integrated circuit continues, the leakage currents flow through the dielectric films insulating the interconnects become a critical issue. However, quantum transport through the mainstream on-chip interfaces between interconnects and dielectrics has not been addressed from first principles yet. Here, using first-principles calculations based on density functional theory and nonequilibrium Green's function formalism, we investigate the interfacial-dependent leakage currents in the Cu/α-cristobalite/Cu junctions. Our results show that the oxygen-rich interfaces form the lowest-leakage-current junction under small bias voltages, followed by the silicon-rich and oxygen-poor ones. This feature is attributed to their transmission spectra, related to their density of states and charge distributions. However, the oxygen-poor interfacial junction may conversely have a better dielectric strength than others, as its transmission gap, from -2.8 to 3.5 eV, is more symmetry respect to the Fermi level than others.The aim of this study was to identify the prevalence of haemorrhagic transformation (HT) in patients with ischaemic stroke, and evaluate its association with medical comorbidities, stroke subtypes, premorbid medication, and long-term survival. To achieve this, we performed a retrospective analysis of 527 consecutive stroke rehabilitation patients. Of these, 102 (19.4%) developed HT. Older patients, and those with large artery strokes, had a higher risk of HT. Forty-one patients received alteplase (rtPA), of which 15 (36.6%) developed HT. A total of 129 (24.5%) patients were taking aspirin prior to their stroke and, of these, 39 (30.2%) developed HT. Twenty-three (4.36%) patients were taking vitamin k antagonists, prior to stroke, of which 14 (60.9%) developed HT. There were 102 patients (19.35%) with underlying atrial fibrillation, of whom 55 (53.9%) developed HT. Patients with known ischaemic heart disease had an increased risk of HT, and patients with HT had significantly lower total cholesterol levels (4.96 vs. 5.34) and lower LDL cholesterol levels (3.20 vs. 3.5). In conclusion, older age, atrial fibrillation, treatment with oral anticoagulants and antiplatelet medications prior to stroke, low total and LDL cholesterol, and rtPA use, are all associated with HT. Survival was not affected by the presence of HT.Pharmaceuticals have been classified as emerging water pollutants which are recalcitrant in nature. In the quest to find a suitable technique in removing them from contaminated water, photoelectrocatalytic oxidation method has attracted much attention in recent years. This report examined the feasibility of degrading ciprofloxacin and sulfamethoxazole through photoelectrocatalytic oxidation using FTO-BiVO4/Ag2S with p-n heterojunction as anode. BiVO4/Ag2S was prepared through electrodeposition and successive ionic layer adsorption/reaction on FTO glass. Structural and morphological studies using XRD, SEM, EDS and diffusive reflectance UV-Vis confirmed the successful construction of p-n heterojunction of BiVO4/Ag2S. Electrochemical techniques were used to investigate enhanced charge separation in the binary electrode. The FTO-BiVO4/Ag2S electrode exhibited the highest photocurrent response (1.194 mA/cm-2) and longest electron lifetime (0.40 ms) than both pristine BiVO4 and Ag2S electrodes which confirmed the reduction in recombination of charge carriers in the electrode. Upon application of the prepared FTO-BiVO4/Ag2S in photoelectrocatalytic removal of ciprofloxacin and sulfamethoxazole, percentage removal of 80% and 86% were achieved respectively with a low bias potential of 1.2 V (vs Ag/AgCl) within 120 min. The electrode possesses good stability and reusability. The results obtained revealed BiVO4/Ag2S as a suitable photoanode for removing recalcitrant pharmaceutical molecules in water.Steady-state visually evoked potential (SSVEP) studies routinely employ simultaneous presentation of two temporally modulated stimuli, with SSVEP amplitude modulations serving to index top-down cognitive processes. However, the nature of SSVEP amplitude modulations as a function of competing temporal frequency (TF) has not been systematically studied, especially in relation to the normalization framework which has been extensively used to explain visual responses to multiple stimuli. https://www.selleckchem.com/products/monastrol.html We recorded spikes and local field potential (LFP) from the primary visual cortex (V1) as well as EEG from two awake macaque monkeys while they passively fixated plaid stimuli with components counterphasing at different TFs. We observed asymmetric SSVEP response suppression by competing TFs (greater suppression for lower TFs), which further depended on the relative orientations of plaid components. A tuned normalization model, adapted to SSVEP responses, provided a good account of the suppression. Our results provide new insights into processing of temporally modulated visual stimuli.The combination of a solid-phase microextraction process with graphite furnace atomic absorption spectrometry provides a very sensitive determination method for determining chromium in waters. Freshly prepared ferrite particles are used to retain the chromium species, and then separated by a magnet without the need for a centrifugation step. The solid phase is suspended in water and directly introduced into the graphite furnace to obtain the analytical signal. The complexation of Cr(III) with ethylenediaminetetraacetate allows the selective retention of Cr(VI), and thus the speciation of the metal. The procedure is sensitive (0.01 µg L-1 detection limit when using a 10 mL sample aliquot) and reproducible (5% relative standard deviation for five consecutive experiments at the 0.3 µg L-1 level). The reliability of the procedure is verified by analysing five certified water samples.