https://www.selleckchem.com/ Recent research has demonstrated that the network measure node strength or sum of a node's connections is roughly equivalent to confirmatory factor analysis (CFA) loadings. A key finding of this research is that node strength represents a combination of different latent causes. In the present research, we sought to circumvent this issue by formulating a network equivalent of factor loadings, which we call network loadings. In two simulations, we evaluated whether these network loadings could effectively (1) separate the effects of multiple latent causes and (2) estimate the simulated factor loading matrix of factor models. Our findings suggest that the network loadings can effectively do both. In addition, we leveraged the second simulation to derive effect size guidelines for network loadings. In a third simulation, we evaluated the similarities and differences between factor and network loadings when the data were generated from random, factor, and network models. We found sufficient differences between the loadings, which allowed us to develop an algorithm to predict the data generating model called the Loadings Comparison Test (LCT). The LCT had high sensitivity and specificity when predicting the data generating model. In sum, our results suggest that network loadings can provide similar information to factor loadings when the data are generated from a factor model and therefore can be used in a similar way (e.g., item selection, measurement invariance, factor scores).There is a long history of interest in looking behavior during human interaction. With the advance of (wearable) video-based eye trackers, it has become possible to measure gaze during many different interactions. We outline the different types of eye-tracking setups that currently exist to investigate gaze during interaction. The setups differ mainly with regard to the nature of the eye-tracking signal (head- or world-centered) and the freedom of movement allowed for