https://www.selleckchem.com/products/ganetespib-sta-9090.html X-ray Powder Diffraction, Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimeter were used to study the effect of the manual grinding in an agate mortar of the diclofenac acid polymorphs HD1 and HD2. In particular, we have tried to highlight how the HD2 form is more sensitive than the HD1 to the grinding process to achieve a nanometric crystal size. HD1 shows no change, while in the case of the HD2, changes in the molecular conformation and the formation of a new metastable form of the polymorph are observed after grinding.Inflammation underlays the onset and supports the development of several worldwide diffused pathologies, therefore in the last decades inflammatory markers have attracted a great deal of interest as diagnostic and therapeutic targets. Adhesion molecules are membrane proteins expressed by endotheliocytes and leukocytes, acting as mediators in the process of tethering, rolling, firm adhesion and diapedesis that leads the immune cells to reach an inflamed tissue. Among them, the adhesion molecule VCAM-1 has been investigated as a potential target because of its low constitutive expression and easy accessibility on the endothelium. Moreover, VCAM-1 is involved in the early stages of development of several pathologies like, among others, atherosclerosis, cancer, Alzheimer's and Parkinson's diseases, so a diagnostic or therapeutic tool directed to this protein would allow specific detection and efficacious intervention. The availability of monoclonal antibodies against VCAM-1 has recently fostered the development of various targeting technologies potentially suitable for imaging and drug delivery in VCAM-1 overexpressing pathologies. In this review we initially focus on the structure and functions of VCAM-1, giving also a brief overview of antibodies origin, structure and function; then, we summarize some of the VCAM-1 targeting nanosystems based on antibodies, gathered