BCL-2-associated athanogene-1 (BAG-1) is a multifunctional protein that was first identified as a binding partner of BCL-2. Our previous results indicated that BAG-1 large (BAG-1L) overexpression significantly increases cell viability and decreases apoptosis by upregulating HSP70 and p-AKT in response to hypoxia/reoxygenation in SY-SH5Y cells. However, the functional domain of BAG-1L that exerts these protective effects against hypoxic damage has not been identified. In this study, we examined changes in HSP70 and p-AKT protein levels in SH-SY5Y cells with or without BAG-1L domain mutation after six hours of hypoxia/reoxygenation treatment. The BAG-1 domain mutant (BAG-1MUT) attenuated neuronal viability and proliferation while enhancing apoptosis after hypoxia/reoxygenation, which was achieved in part by inhibiting the HSP70 and p-AKT signalling pathways. This evidence illustrates that the BAG-1 domain plays a key role in protecting cells from hypoxia/reoxygenation injury.Dopamine signaling mediates the formation of some types of social relationships, including reproductive pair bonds in the socially monogamous prairie vole (Microtus ochrogaster). In addition to these pair bonds with mates, prairie voles demonstrate selective preferences for familiar same-sex peers. The dependence of peer relationships on dopamine signaling has not been tested, and the mechanisms supporting these relationships may differ from those underlying pair bonds. We examined the effects of pharmacological manipulations of dopamine signaling on peer partner preference and socially conditioned place preference in female prairie voles. Haloperidol blockade of dopamine receptors at multiple doses did not alter selective preferences for familiar same-sex partners, suggesting that dopamine neurotransmission is not necessary for the formation of prairie vole peer relationships, unlike mate relationships. Dopamine receptor agonist apomorphine facilitated peer partner preferences under conditions normally insufficient for partner preference formation; however, in the absence of effects from blockade, it is difficult to distinguish between a role for dopamine in partner preference formation and the generally rewarding properties of a dopamine agonist. Prairie voles exhibited socially conditioned place preferences for new but not long-term same-sex peers, and these preferences were not blocked by haloperidol. These results suggest that prairie vole peer relationships are less dependent on dopamine signaling than pair bonds, while still being rewarding. The data support distinct roles of dopamine and motivation in prairie vole peer relationships relative to mate relationships, suggesting that reproductive bonds are mediated differently from non-reproductive ones.Small molecular chemicals targeting individual subtype of G proteins including Gs, Gi/o and Gq has been lacking, except for pertussis toxin being an established selective peptide inhibitor of the Gi/o protein. Recently, a cyclic depsipeptide compound YM-254890 isolated from culture broth of Chromobacterium sp. was reported as a selective inhibitor for the Gq protein by blocking GDP exchange of GTP on the α subunit of Gq complex. However, functional selectivity of YM-254890 towards various G proteins was not fully characterized, primarily due to its restricted availability before 2017. Here, using human coronary artery endothelial cells as a model, we performed a systemic pharmacological evaluation on the functional selectivity of YM-254890 on multiple G protein-mediated receptor signaling. First, we confirmed that YM-254890, at 30 nM, abolished UTP-activated P2Y2 receptor-mediated Ca2+ signaling and ERK1/2 phosphorylation, indicating its potent inhibition on the Gq protein. https://www.selleckchem.com/products/avelumab.html However, we unexpectedly found that YM-254890 also significantly suppressed cAMP elevation and ERK1/2 phosphorylation induced by multiple Gs-coupled receptors including β2-adrenegic, adenosine A2 and PGI2 receptors. Surprisingly, although YM-254890 had no impact on CXCR4/Gi/o protein-mediated suppression of cAMP production, it abolished ERK1/2 activation. Further, no cellular toxicity was observed for YM-254890, and it neither affected A23187- or thapsigargin-induced Ca2+ signaling, nor forskolin-induced cAMP elevation and growth factor-induced MAPK signaling. We conclude that YM-254890 is not a selective inhibitor for Gq protein; instead, it acts as a broad-spectrum inhibitor for Gq and Gs proteins and exhibits a biased inhibition on Gi/o signaling, without affecting non-GPCR-mediated cellular signaling.Chronic kidney disease (CKD) is a common global progressive disease, but there are no ideal drugs for the treatment. Fucoidan and fucoxanthin, and L-carnitine are one of the very few natural products that have a therapeutic effect on CKD in animal experiments. However, the combined effects of these compounds on CKD are unknown. We established a mouse CKD model by right nephrectomy with transient ischemic injury to the left kidney. Oligo-fucoidan and fucoidan were extracted from Laminaria japonica. We fed CKD mice with the two compounds and L-carnitine to evaluate the combined effects on CKD. Oligo-fucoidan and fucoidan inhibited renal fibrosis and reduced serum creatine in CKD mice to a greater extent than any single compound. L-carnitine had no measurable effect on renal fibrosis but promoted the protective effect of the mixture of oligo-fucoidan and fucoidan on renal function in CKD mice. In the two-month safety test, the combined mixture further improved renal function and did not elevate serum aspartate aminotransferase and alanine aminotransferase levels in CKD mice. Furthermore, the weights of CKD mice treated with the combination increased to the normal level. We also found that all oligo-fucoidan, fucoxanthin, and L-carnitine inhibit H2O2-induced apoptosis and activated Akt in rat renal tubular cells. Our results confirm that oligo-fucoidan, fucoxanthin, and L-carnitine have a combined protective effect on the kidneys. The combined mixture may be beneficial for CKD patients.Previously, we have shown that an increased cGMP-activated protein Kinase (PKG) activity after phosphodiesterase 5 (PDE5) inhibition by Sildenafil (SIL), leads to myocardial Na+/H+ exchanger (NHE1) inhibition preserving its basal homeostatic function. Since NHE1 is hyperactive in the hypertrophied myocardium of spontaneous hypertensive rats (SHR), while its inhibition was shown to prevent and revert this pathology, the current study was aimed to evaluate the potential antihypertrophic effect of SIL on adult SHR myocardium. We initially tested the inhibitory capability of SIL on NHE1 in isolated cardiomyocytes of SHR by comparing H+ efflux during the recovery from an acid load. After confirmed that effect, eight-month-old SHR were chronically treated for one month with SIL through drinking water. Compared to their littermate controls, SIL-treated rats presented a decreased NHE1 activity, which correlated with a reduction in its phosphorylation level assigned to activation of a PKG-p38 MAP kinase-PP2A signaling pathway.