https://www.selleckchem.com/products/dlin-kc2-dma.html Our experimental results reveal that the active connection clusters distinguished by the proposed method gradually move from frontal region to parieto-occipital regionwith the progress of fatigue, consistent with the alpha energy changes in these two brain areas. The active class of the clusters in parieto-occipital region significantly decreases and the most active clusters remain in the frontal region when RADIO is taken. The estimation results of DE confirm the significant change (p less then 0.05) of information content due to the cluster movements. Hence, preventing the movement of the active clusters from frontal region to parieto-occipital region may correlate with maintaining driver alertness. The revelation of alerting effect is helpful for the targeted upgrade of fatigue countermeasures.We study and compare the time evolutions of concurrence and quantum discord in a driven system of two interacting qubits prepared in a generic Werner state. The corresponding quantum dynamics is exactly treated and manifests the appearance and disappearance of entanglement. Our analytical treatment transparently unveils the physical reasons for the occurrence of such a phenomenon, relating it to the dynamical invariance of the X structure of the initial state. The quantum correlations which asymptotically emerge in the system are investigated in detail in terms of the time evolution of the fidelity of the initial Werner state.The four-node relay broadcast channel (RBC) is considered, in which a transmitter communicates with two receivers with the assistance of a relay node. We first investigate three types of physically degraded RBCs (PDRBCs) based on different degradation orders among the relay and the receivers' observed signals. For the discrete memoryless (DM) case, only the capacity region of the second type of PDRBC is already known, while for the Gaussian case, only the capacity region of the first type of PDRBC