https://www.selleckchem.com/products/mz-1.html The CCK-8 and cell scratch experiments verified that ACPs significantly inhibited proliferation and migration of HGC-27 in vitro. ACPs increased cells apoptosis rate, while were rescued by apoptosis inhibitor Z-VAD-FMK. Furthermore, ACPs downregulated the expression levels of Vimentin protein and Snail protein markedly. Intriguingly, ACPs increased the accumulation of ROS via inhibited the glutathione peroxidase 4 (GPx4) and xCT (SLC7A11) proteins, while were inhibited by Ferrostatin-1 (Fer-1) significantly. Furthermore, the zebrafish xenograft study further confirmed that administration of ACP suppressed the xenograft growth and metastasis of transplanted HGC-27 cells in vivo. In conclusion, ACP was a promising antineoplastic agent for the treatment of gastric cancer by regulating apoptosis, ferroptosis and mesenchymal phenotype. In recent years, autophagy has become a research hotspot in the field of pancreatic adenocarcinoma (PAAD) due to its ambiguous roles in pancreatic tumor progression. Hence, it is necessary to assess its clinical significance in a larger cohort of patients with PAAD. Here, we identified autophagy-related genes with prognostic value in PAAD and constructed a risk model based on these genes. We found that patients in high-risk group were significantly associated with poor prognosis. Genome mutation analysis suggested that KRAS and TP53 mutations were significantly higher in high-risk groups. In addition, functional enrichment analysis showed that high-risk groups were associated with immune cell infiltration and tumor-associated signaling pathways. We further performed CIBERSORT analysis and observed increased macrophage infiltration in high-risk group, but decreased B and T cell counts compared to that in low-risk group. Gene set enrichment analysis indicated that the Hippo pathway was enriched in the high-risk group. Further, using weighted gene co-expression network analysis, Yes-associated pr