https://www.selleckchem.com/products/zebularine.html Many proteins, including DICER1 and hAgo2, are involved in the biogenesis of microRNAs (miRNAs). Whether hAgo2 regulates DICER1 expression is unknown. Exogenously overexpressed hAgo2 suppressed DICER1 expression at the levels of both protein and mRNA, and the reduction in hAgo2 expression enhanced DICER1 expression. Precursor miRNA processing mediated by DICER1 was also modulated by hAgo2. However, hAgo2 protein did not suppress DICER1 promoter activity. Therefore, hAgo2 protein probably regulates DICER1 expression at the posttranscriptional level. Indeed, hAgo2 protein inhibited the reporter assay of the DICER1 mRNA 3' untranslated region (3'-UTR). Previous reports have demonstrated that miRNAs (e.g., let-7 and miR-103/107) inhibited DICER1 expression posttranscriptionally. However, hAgo2 still suppressed DICER1 expression in the cells depleted of these miRNAs. Moreover, the reporter activities of the DICER1 mRNA 3'-UTR without these miRNA binding sites were still suppressed by hAgo2. Therefore, in addition to an miRNA-dependent pathway, hAgo2 can also modulate DICER1 expression through an miRNA-independent mechanism. Downregulation of DICER1 expression was further proven to be dependent on both hAgo2 and AUF1 proteins. Interactions of hAgo2 and AUF1 proteins were demonstrated by the coimmunoprecipitation assay. As expected, hAgo2 could not suppress the DICER1 mRNA 3'-UTR reporter with a mutation in the potential AUF1-binding site. Thus, downregulation of DICER1 expression through the 3'-UTR requires both hAgo2 and AUF1.A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (coronavirus disease 2019 [COVID-19]) is now at global pandemic levels causing significant morbidity and mortality. Patients with diabetes are particularly vulnerable and more likely to get severe complications when infected with this virus. Although the information continues to emerge, here we provide our perspectiv