https://www.selleckchem.com/products/ca3.html Immunogold labeling experiments demonstrate linear aggregates of pTSC purified from mammalian brains. These observations suggest polymerization of endogenous pTSC into filamentous superstructures.C-Glycosylation in the biosynthesis of bioactive natural products is quite unique, which has not been studied well. Medermycin, as an antitumor agent in the family of pyranonaphthoquinone antibiotics, is featured with unique C-glycosylation. Here, a new C-glycosyltransferase (C-GT) Med-8 was identified to be essential for the biosynthesis of medermycin, as the first example of C-GT to recognize a rare deoxyaminosugar (angolosamine). med-8 and six genes (med-14, -15, -16, -17, -18, and -20 located in the medermycin biosynthetic gene cluster) predicted for the biosynthesis of angolosamine were proved to be functional and sufficient for C-glycosylation. A C-glycosylation cassette composed of these seven genes could convert a proposed substrate into a C-glycosylated product. In conclusion, these genes involved in the C-glycosylation of medermycin were functionally identified and biosynthetically engineered, and they provided the possibility of producing new C-glycosylated compounds.Atomically thin indium selenide (InSe) is a representative two-dimensional (2D) family that have recently attracted extensive interest for their intriguing emerging physics and potential optoelectronic applications with high-performance. Here, by utilizing molecular beam epitaxy and scanning tunneling microscopy, we report a controlled synthesis of InSe thin films down to the monolayer limit and characterization of their electronic properties at atomic scale. Highly versatile growth conditions are developed to fabricate well crystalline InSe films, with a reversible and controllable phase transformation between InSe and In2Se3. The band gap size of InSe films, as enhanced by quantum confinement, increases with decreasing film thickness. Near various categ