Soft nanoparticles continue to offer a promising platform for the encapsulation and controlled delivery of poorly water-soluble drugs and help enhance their bioavailability at targeted sites. Linear amphiphilic block copolymers are the most extensively investigated in formulating delivery vehicles. However, more recently, there has been increasing interest in utilizing branched macromolecules for nanomedicine, as these have been shown to lower critical micelle concentrations, form particles of smaller dimensions, facilitate the inclusion of varied compositions and function-based entities, as well as provide prolonged and sustained release of cargo. In this review, it is aimed to discuss some of the key variables that are studied in tailoring branched architecture-based assemblies, and their influence on drug loading and delivery. By understanding structure-property relationships in these formulations, one can better design branched star polymers with suitable characteristics for efficient therapeutic interventions. The role played by polymer composition, chain architecture, crosslinking, stereocomplexation, compatibility between polymers and drugs, drug/polymer concentrations, and self-assembly methods in their performance as nanocarriers is highlighted.Stimulator of interferon genes (STING) are located in the endoplasmic reticulum of cells, which have been demonstrated to show considerable potentials to achieve efficient antitumor immunity by inducing various pro-inflammatory cytokines and chemokines, such as type I interferons. A variety of STING agonists have been prepared for STING activation, and many of them have been promoted to preclinical trials or clinical applications for the immunotherapy of cancers. However, the intrinsic disadvantages of the small molecule STING agonists can limit the in vivo application and final therapeutic efficacy due to low bioavailability of targeting tissues. Moreover, a cascade of physiological barriers for in vivo STING activation also limit the accumulation of STING agonists in targeting tissues. Drug delivery systems play an important role to improve the STING activation efficiency. In recent years, a variety of nanoparticle-mediated STING agonist delivery systems have been engineered and exploited to address the challenges related to the in vivo STING activation, including liposomes, polymeric micelles, polymersomes, and so on. In this review article, the progresses concerning STING agonists and related delivery systems in recent years will be summarized and discussed.The aim of the current study is to assess the biological performance of self-healing hydrogels based on calcium phosphate (CaP) nanoparticles and bisphosphonate (BP) conjugated hyaluronan (HA) in a critical size segmental femoral bone defect model in rats. Additionally, these hydrogels are loaded with bone morphogenetic protein 2 (BMP-2) and their performance is compared in healthy and osteoporotic bone conditions. Treatment groups comprise internal plate fixation and placement of a PTFE tube containing hydrogel (HABP -CaP) or hydrogel loaded with BMP-2 in two dosages (HABP -CaP-lowBMP2 or HABP -CaP-highBMP2). Twelve weeks after bone defect surgery, bone formation is analyzed by X-ray examination, micro-CT analysis, and histomorphometry. The data show that critical size, segmental femoral bone defects cannot be healed with HABP -CaP gel alone. Loading of the HABP -CaP gel with low dose BMP-2 significantly improve bone formation and resulted in defect bridging in 100% of the defects. https://www.selleckchem.com/products/u18666a.html Alternatively, high dose BMP-2 loading of the HABP -CaP gel does not improve bone formation within the defect area, but leads to excessive bone formation outside the defect area. Bone defect healing is not affected by osteoporotic bone conditions.Poly(glycerol sebacate) (PGS), an emerging promising thermosetting polymer synthesized from sebacic acid and glycerol, has attracted considerable attention due to its elasticity, biocompatibility, and tunable biodegradation properties. But it also has some drawbacks such as harsh synthesis conditions, rapid degradation rates, and low stiffness. To overcome these challenges and optimize PGS performance, various modification methods and fabrication techniques for PGS-based scaffolds have been developed in recent years. Outlining the current modification approaches of PGS and summarizing the fabrication techniques for PGS-based scaffolds are of great importance to accelerate the development of new materials and enable them to be appropriately used in potential applications. Thus, this review comprehensively overviews PGS derivatives, PGS composites, PGS blends, processing for PGS-based scaffolds, and their related applications. It is envisioned that this review could instruct and inspire the design of the PGS-based materials and facilitate tissue engineering advances into clinical practice.Silk is a natural fibrous polymer with application potential in regenerative medicine. Increasing interest remains for silk materials in bone tissue engineering due to their characteristics in biocompatibility, biodegradability and mechanical properties. Plenty of the in vitro and in vivo studies confirmed the advantages of silk in accelerating bone regeneration. Silk is processed into scaffolds, hydrogels, and films to facilitate different bone regenerative applications. Bioactive factors such as growth factors and drugs, and stem cells are introduced to silk-based matrices to create friendly and osteogenic microenvironments, directing cell behaviors and bone regeneration. The recent progress in silk-based bone biomaterials is discussed and focused on different fabrication and functionalization methods related to osteogenesis. The challenges and potential targets of silk bone materials are highlighted to evaluate the future development of silk-based bone materials. Patients with juvenile dermatomyositis (JDM) experience muscle weakness, tiredness, and loss of energy, which restrict their abilities in performance of their daily living activities. To explore the effect of aquatic-based plyometric (Aqua-PLYO) exercises on muscle strength, fatigue, and functional ability in patients with JDM. This was a randomized, single-blind, crossover pilot study that included 16 patients with JDM (age 13.44±2.85years). They were assigned randomly to receive either the Aqua-PLYO exercises (n=8) or the standard outpatient care (SoC ; n=8) first. After a 1-month washout, the treatment was reversed. Lower limb muscle strength, fatigue perception, functional ability, and disease activity were evaluated before and after each treatment period. Irrespective of the treatment order, the Aqua-PLYO treatment yielded greater improvement in muscle strength (hip flexors and abductors [P<0.001] or knee flexors [P<0.001] and extensors [P=0.0008]), fatigue perception (P<0.001), functional ability (P=0.