https://www.selleckchem.com/products/e7766-diammonium-salt.html Lewis acids play key roles in many chemical reactions. Structural and functional (kinetic) detail in Lewis acid catalysed fructose conversion are derived herein by the combined use of conventional and dissolution dynamic nuclear polarization (D-DNP) NMR. Structural information obtained with D-DNP NMR was used to identify conditions that stabilize an elusive initial intermediate and to determine its chemical structure. Carbohydrate dehydration through this intermediate had been predicted computationally. Complementary kinetic NMR assays yielded rate constants spanning three orders of magnitude for the three biggest energy barriers in the catalytic cycle.Specific targeted drug delivery and controllable release of drugs at tumor regions are two of the main challenges for hepatocellular carcinoma (HCC) therapy, particularly post metastasis. Herein, we present a platelet membrane-facilitated local chemo-photothermal therapy strategy, in which polypyrrole (PPy) nanoparticles act as photothermal agents and along with antitumor drug doxorubicin (DOX) are encapsulated into platelet membranes (PLT-PPy-DOX). The particles are endowed with immune evasiveness and tumor targeting abilities from platelet membranes, and are then intravenously injected into an orthotopic mouse model of HCC. As expected, the PLT-PPy-DOX nanoplatforms were abundant in the tumor tissues. Hyperthermia was generated under laser irradiation (808 nm) not only to ablate tumor cells directly but also to increase the triggered release of DOX. This combination of local chemotherapy and photothermal therapy demonstrated excellent antitumor efficiency in suppressing primary tumor growth and inhibiting tumor metastases. This localized therapy which adopts biocompatible natural cell membranes and good biodegradable organic photothermal agents may provide new insights into designing biomimetic nano-vehicles for personalized therapy of HCC.The increasin