https://www.selleckchem.com/products/troglitazone-cs-045.html Leaf samples from five Brassicaceae species (Brassica carinata, Brassica oleracea, Brassica rapa, Eruca vesicaria and Sinapis alba) were analyzed to determine their contents of glucosinolates and trace elements, and the bioaccessibility of these compounds. Considerable variability in the total contents and glucosinolate profiles was observed in the Brassicaceae species, with the total amounts ranging from 8.5 µmol/g dw in Brassica oleracea to 32.9 µmol/g dw in Sinapis alba. Bioaccessibilities of the predominant glucosinolates were moderate, ranging from 13.1% for glucoraphanin to 43.2% for gluconapin, which is particularly relevant as they have been implicated in a variety of anti-carcinogenic mechanisms. Trace element concentrations were Se (28-160 µg/Kg dw); Cr (0.31-4.03 µg/g dw); Ni (0.19-1.53 µg/g dw); Fe (8.6-18.8 µg/g dw); Zn (20.8-41.5 µg/g dw); Ca (6.2-15.2 mg/g dw). Brassicaceae leaves were also moderate dietary sources of Se, Ni, Zn and Ca.Chloramphenicol (CAP) is a toxic substance for human health, and detection of CAP residues in milk is necessary. However, most of the traditional CAP detection methods including high performance liquid chromatography-tandem mass spectrometry (HPLC-MS) and enzyme-linked immunosorbent assay (ELISA) are time-consuming and complicated. Herein, an automated microfluidics system for CAP detection in milk was developed. The residual CAP of multiple milk samples was quantitatively detected via competitive immunoassay in a single microfluidic chip simultaneously and automatically, and the reliability of the method was confirmed by flow cytometry. Completion of the detection by the system required less than 20 min and the cost for the detection of ten samples was about US$2.5. The limit of detection was 0.05 µg L-1, and the recovery rate of CAP in milk ranged from 91.3% to 105.5%. The microfluidic system developed in this study exhibited considerable potential in the p