https://www.selleckchem.com/products/yo-01027.html 0) at 25 °C is in the decreasing order of CeO2 nanopolyhedra > CeO2 nanorods > ZnO nanospheres (NSs) > CeO2 nanocubes > TiO2 NSs > CeO2 NSs > Fe3O4 NSs ~ Co3O4 NSs ~ control experiment. The mechanism for the degradation of EP was confirmed by monitoring catalytic kinetics of the CeO2 nanopolyhedra in the presence of EP, dimethyl paraoxon, 4-nitrophenyl phosphate, and parathion. The nanocomposites were simply fabricated by electrostatic self-assembly of the CeO2 nanopolyhedra and poly(diallyldimethylammonium chloride)-capped gold nanoparticles (PDDA-AuNPs). The resultant nanocomposites still efficiently catalyzed NaBH4-mediated reduction of 4-nitrophenol to 4-aminophenol with a normalized rate constant of 6.68 ± 0.72 s-1 g-1 and a chemoselectivity of >99%. In confirmation of the robustness and applicability of the as-prepared nanocomposites, they were further used to catalyze the degradation of EP to 4-amionphenol in river water and seawater.Background The burden of COVID-19 was extremely severe in Northern Italy, an area characterized by high concentrations of particulate matter (PM), which is known to negatively affect human health. Consistently with evidence already available for other viruses, we initially hypothesized the possibility of SARS-CoV-2 presence on PM, and we performed a first experiment specifically aimed at confirming or excluding this research hyphotesys. Methods We have collected 34 PM10 samples in Bergamo area (the epicenter of the Italian COVID-19 epidemic) by using two air samplers over a continuous 3-weeks period. Filters were properly stored and underwent RNA extraction and amplification according to WHO protocols in two parallel blind analyses performed by two different authorized laboratories. Up to three highly specific molecular marker genes (E, N, and RdRP) were used to test the presence of SARS-CoV-2 RNA on particulate matter. Results The first test showed positive results for gene E in