https://www.selleckchem.com/products/azd6738.html BLAST searches and phylogenetic analyses performed approximately 1 year and 9 months after the isolation date revealed an isolate within the Penicillium parvum clade in the Penicillium section Exilicaulis but phylogenetically distant from the other species in the section, thus representing a new species, Penicillium labradorum. Antifungal susceptibility testing was also performed on the isolate and low minimum inhibitory concentrations were observed with terbinafine, voriconazole, and posaconazole, while in vitro resistance was observed with fluconazole. The dog had been previously treated with fluconazole, itraconazole, amphotericin B lipid complex, voriconazole, and terbinafine. Approximately 587 days after the initial diagnosis, the dog was euthanized due to worsening of clinical signs and concerns for quality of life. © The Author(s) 2020. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology.The genus Malassezia comprises a heterogeneous group of species that cause similar pathologies. Malassezia yeasts were considered as the most abundant skin eukaryotes of the total skin mycobiome. The ability of this fungus to colonize or infect is determined by complex interactions between the fungal cell and its virulence factors. This study aims to evaluate in vitro the hydrophobicity levels, the adherence capacity on a polystyrene surface and the ability to form biofilm of 19 isolates, including M. sympodialis, M. globosa, and M. slooffiae, from healthy subjects and from dermatological disorders. Cellular surface hydrophobicity levels were determined by two-phase system. The biofilm formation was determined by tetrazolium salt (XTT) reduction assay and by Scanning Electron Microscopy (SEM). Strain dependence was observed in all virulence factors studied. All isolates of M. sympodialis, M. globosa, and M. slooffiae demonstrated their ability to form biofilm at variable ca