https://www.selleckchem.com/products/brm-brg1-atp-inhibitor-1.html An epoch-by-epoch recall (true positive rate) of 75.0 %, 59.9 %, 74.8 % and 57.1 %, was found for 'Deep', 'Light', 'REM' and 'Wake' respectively. Highly similar results were obtained in the independent validation dataset (n=24), indicating robustness of results and generalizability of the sleep staging model, at least in the healthy population. The device was found to outperform both a consumer and medical grade wrist-worn monitoring device (Fitbit Alta HR and Philips Respironics Actiwatch) on sleep metric estimation accuracy. These results indicate that the developed non-contact monitor forms a viable alternative to existing clinically used wrist-worn methods, and that longitudinal monitoring of sleep stages in a home environment becomes feasible.We introduce a novel monitoring solution for fluid accumulation in the human body (e.g. internal bleeding), based on observation of a selected energy-describing feature of the Ballistocardiogram (BCG) signal. It is hypothesized that, because of additional damping generated by the fluid, BCG signal energy decreases as compared to its baseline value. Data were collected from 15 human volunteers via accelerometers attached to the participants' body, and an electromechanical-film (EMFi) sensor-equipped bed. Fluid accumulation along the gastrointestinal (GI) tract was induced by means of water intake by the participants, and the BCG signal was recorded before and after intake. Based on performance evaluation, we selected a suitable energy feature and sensing channel amongst the ones investigated. The chosen feature showed a significant decrease in signal energy from baseline to after-intake condition (p-value less then 0.001), and identified the presence of fluid accumulation with high sensitivity (90% in bed-based, and 100% in standing-position monitoring).Continuous Glucose Monitoring (CGM) has enabled important opportunities for diabetes management. This stud