https://www.selleckchem.com/products/ap-3-a4-enoblock.html JGP study describes a novel quantitative assay combining fluorescence microscopy and electrophysiology, which reveals that transport of small molecules through CALHM1 and connexin channels is saturable.Large-pore channels permeable to small molecules such as ATP, in addition to atomic ions, are emerging as important regulators in health and disease. Nonetheless, their mechanisms of molecular permeation and selectivity remain mostly unexplored. Combining fluorescence microscopy and electrophysiology, we developed a novel technique that allows kinetic analysis of molecular permeation through connexin and CALHM1 channels in Xenopus oocytes rendered translucent. Using this methodology, we found that (1) molecular flux through these channels saturates at low micromolar concentrations, (2) kinetic parameters of molecular transport are sensitive to modulators of channel gating, (3) molecular transport and ionic currents can be differentially affected by mutation and gating, and (4) N-terminal regions of these channels control transport kinetics and permselectivity. Our methodology allows analysis of how human disease-causing mutations affect kinetic properties and permselectivity of molecular signaling and enables the study of molecular mechanisms, including selectivity and saturability, of molecular transport in other large-pore channels.Ultrasound can modulate action potential firing in vivo and in vitro, but the mechanistic basis of this phenomenon is not well understood. To address this problem, we used patch-clamp recording to quantify the effects of focused, high-frequency (43 MHz) ultrasound on evoked action potential firing in CA1 pyramidal neurons in acute rodent hippocampal brain slices. We find that ultrasound can either inhibit or potentiate firing in a spike frequency-dependent manner at low (near-threshold) input currents and low firing frequencies, ultrasound inhibits firing, while at higher input cu