https://www.selleckchem.com/products/mitoquinone-mesylate.html Non-participants did not differ from participants in key sociodemographic factors and dementia risk. Study participants were M = 69.0 (SD = 4.9) years old, and 52.1% were women. The average Montreal Cognitive Assessment/MoCA score was 24.5 (SD = 3.1), indicating a rather mildly cognitively impaired study population; however, 39.4% scored ≥ 26, thus being cognitively unimpaired. The bandwidth of cognitive states bears the interesting potential for differential trial outcome analyses. However, trial conduction is impacted by the COVID-19 pandemic, requiring adjustments to the study protocol with yet unclear methodological consequences.Brain injury is a significant risk factor for chronic gliosis and neurodegenerative diseases. Currently, no treatment is available for neuroinflammation caused by the action of glial cells following brain injury. In this study, we investigated the quinpirole-mediated activation of dopamine D2 receptors (D2R) in a mouse model of traumatic brain injury (TBI). We also investigated the neuroprotective effects of quinpirole (a D2R agonist) against glial cell-induced neuroinflammation secondary to TBI in adult mice. After the brain injury, we injected quinpirole into the TBI mice at a dose of 1 mg/kg daily intraperitoneally for 7 days. Our results showed suppression of D2R expression and deregulation of downstream signaling molecules in ipsilateral cortex and striatum after TBI on day 7. Quinpirole administration regulated D2R expression and significantly reduced glial cell-induced neuroinflammation via the D2R/Akt/glycogen synthase kinase 3 beta (GSK3-β) signaling pathway after TBI. Quinpirole treatment concomitantly attenuated increase in glial cells, neuronal apoptosis, synaptic dysfunction, and regulated proteins associated with the blood-brain barrier, together with the recovery of lesion volume in the TBI mouse model. Additionally, our in vitro results confirmed that quinpiro