https://www.selleckchem.com/products/gsk3326595-epz015938.html It has been shown that alcohol consumption by pregnant women can have detrimental effects on the developing fetus and lead to fetal alcohol spectrum disorders (FASD). Exposure to alcohol in rat pups during this period causes long-term changes in the structure of the animal's hippocampus, leading to impaired hippocampal-related brain functions such as navigation tasks and spatial memory. Apelin-13, a principal neuropeptide with inhibitory effects on neuroinflammation and brain oxidative stress production, has beneficial properties on memory impairment and neuronal injury. The protective effects of apelin-13 have been evaluated on ethanol-related neurotoxicity in the hippocampus of rat pups. Rat pups from 2 until 10 postnatal day, similar to the third trimester of pregnancy in humans, were intubated total daily dose of ethanol (5/27 g/kg/day). Immediately after intubation, 25 and 50 μg/ kg of apelin-13 was injected subcutaneously. By using Morris water maze task, the hippocampus- dependent memory and spatial leore studies are needed.Tissue-specific transcription factors allow cells to specify new fates by exerting control over gene regulatory networks and the epigenetic landscape of a cell. However, our knowledge of the molecular mechanisms underlying cell fate decisions is limited. In Arabidopsis, the MADS-box transcription factor AGAMOUS (AG) plays a central role in regulating reproductive organ identity and meristem determinacy during flower development. During the vegetative phase, AG transcription is repressed by Polycomb complexes and intronic noncoding RNA. Once AG is transcribed in a spatiotemporally regulated manner during the reproductive phase, AG functions with chromatin regulators to change the chromatin structure at key target gene loci. The concerted actions of AG and the transcription factors functioning downstream of AG recruit general transcription machinery for proper cell fate decision.