https://www.selleckchem.com/products/gsk2982772.html s to how those declines might affect bird ecology and evolution. First, differences in declines among behavioral components may allow identification of behaviors that are most susceptible to decline in the wild. Second, variation in performance declines and heat dissipation behaviors among individuals suggests variability in heat tolerance, which could lead to differential fitness in the wild. Last, these results suggest that high air temperatures cause cognitive declines in the wild and that understanding cognition could help refine predictive models of population persistence.Population time series analysis is an integral part of conservation biology in the current context of global changes. To quantify changes in population size, wildlife counts only provide estimates because of various sources of error. When unaccounted for, such errors can obscure important ecological patterns and reduce confidence in the derived trend. In the case of highly gregarious species, which are common in the animal kingdom, the estimation of group size is an important potential bias, which is characterized by high variance among observers. In this context, it is crucial to quantify the impact of observer changes, inherent to population monitoring, on i) the minimum length of population time series required to detect significant trends and ii) the accuracy (bias and precision) of the trend estimate.We acquired group size estimation error data by an experimental protocol where 24 experienced observers conducted counting simulation tests on group sizes. We used this empirical data to simulate observation data and help taking appropriate management decisions and setting conservation priorities. The same occurs when increasing the number of observers spread over 100 sites. If the population surveyed is composed of few sites, then it is preferable to perform the survey by one observer. In this context, it is important to reconsider how we