https://www.selleckchem.com/products/ly3522348.html Agricultural GHG emissions (excluding land use change) of feasible scenarios range from 1.7 to 12.5 Gt CO2e yr-1. When including changes in SOC and vegetation regrowth on spare land, the range is between -10.7 and 12.5 Gt CO2e yr-1. Our results show that diets are the main determinant of GHG emissions, with highest GHG emissions found for scenarios including high meat demand, especially if focused on ruminant meat and milk, and lowest emissions for scenarios with vegan diets. Contrary to frequent claims, our results indicate that diets and the composition and quantity of livestock feed, not crop yields, are the strongest determinants of GHG emissions from food-systems when existing forests are to be protected.In this study, scrap irons (SI)/granular activated carbons (GAC) micro-electrolysis treatment and persulfate-releasing materials (PRM) treatment were employed to construct the combination reduction and oxidation system to treat 2,4-dinitrotoluene (2,4-DNT) contaminated groundwater. The 2,4-DNT treatment efficiencies in the PRM pre-treatment before SI/GAC micro-electrolysis treatment (FM-1 = PRM + SI/GAC) and SI/GAC micro-electrolysis pre-treatment before the PRM treatment (FM-3 = SI/GAC + PRM) were investigated in two separated columns. As control groups, the separated SI and GAC instead of the SI/GAC mixture were used in another two separated columns (FM-2 = PRM + SI + GAC; FM-4 = SI + GAC + PRM). The highest treatment efficiencies of 2,4-DNT in the FM-1 and FM-3 systems reached 79% and 93% during 5 PV, respectively. We found that the filling position of SI, GAC and PRM significantly affected the variations of pH, oxidation-reduction potential, Fe2+ and S2O82- concentrations in the combined systems. These results indicated that the SI/GAC micro-electrolysis pre-treatment of 2,4-DNT before the PRM treatment (FM-3) is more beneficial. The fifteen main intermediates in the combined system were identified by the