Nano-fluids or Nano-composites can be used to recombine the reactive parts of thermal storage materials after broken at elevated temperature to recover the stored heat for drying purpose during the off-sunshine periods in solar drying of crops. Nanomaterials can be a source of electroluminescence light in hydroponic system and act as coatings and surface hardener in crop processing machinery for post-harvest machines. The reviewed work showed that nanotechnologies has good prospect in adding value in agricultural production in the aspects discussed.Colorimetric biosensors can be used to detect a particular analyte through color changes easily by naked eyes or simple portable optical detectors for quantitative measurement. Thus, it is highly attractive for point-of-care detections of harmful viruses to prevent potential pandemic outbreak, as antiviral medication must be administered in a timely fashion. This review paper summaries existing and emerging techniques that can be employed to detect viruses through colorimetric assay design with detailed discussion of their sensing principles, performances as well as pros and cons, with an aim to provide guideline on the selection of suitable colorimetric biosensors for detecting different species of viruses. Among the colorimetric methods for virus detections, loop-mediated isothermal amplification (LAMP) method is more favourable for its faster detection, high efficiency, cheaper cost, and more reliable with high reproducible assay results. Nanoparticle-based colorimetric biosensors, on the other hand, are most suitable to be fabricated into lateral flow or lab-on-a-chip devices, and can be coupled with LAMP or portable PCR systems for highly sensitive on-site detection of viruses, which is very critical for early diagnosis of virus infections and to prevent outbreak in a swift and controlled manner.This study aimed to explore the effects and possible mechanisms of intravenous lidocaine in postherpetic neuralgia (PHN) rats. https://www.selleckchem.com/products/bupivacaine.html Mechanical withdrawal thresholds and thermal withdrawal latencies were measured. Open field test, elevated plus maze test, and tail suspension test were used to assess anxiety- and depressive-like behaviors. Microglia and astrocytes in spinal dorsal horn (SDH), prefrontal cortex (PFC), anterior cingulate cortex (ACC), and hippocampus were analyzed. The expression of TNF-α, IL-1β, and IL-4 in SDH and serum were evaluated. Intravenous lidocaine alleviated mechanical allodynia and thermal hypoalgesia, downregulated the expression of TNF-α and IL-1β, and inhibited the activation of microglia and astrocytes in SDH. In addition, it reduced the activation of astrocyte but not microglia in PFC, ACC, and hippocampus. Intravenous lidocaine may relieve PHN by inhibiting the activation of microglia and astrocyte in SDH or by reducing the neuroinflammation and astrocyte activation in PFC, ACC, and hippocampus.Biology of the response to anti-CTLA-4 involves the dynamics of specific T cell clones. Reasons for clinical success and failure of this treatment are still largely unknown. Here, we quantified the dynamics of the T cell receptor (TCR) repertoire, throughout 4 weeks involving treatment with anti-CTLA-4, in a syngeneic mouse model for colorectal cancer. These dynamics show an initial increase in clonality in tandem with a decrease in diversity, effects which gradually subside. Furthermore, response to treatment is tightly connected to the shared and public parts of the T cell repertoire. We were able to recognize time-dependent behaviors of specific TCR sequences and cell types and to show the response is dominated by specific motifs. We see that a single, specific time point might be useful to inform a physician of the true response to treatmentThe research further highlights the importance of temporal analyses of the immune response.Effective thermal regulation has shown great impacts on tremendous aspects of our life and manufacture. However, the invisible nature of thermal field brings us inconvenience or even security hazard. Herein, we present a method to visualize thermal distribution with the aid of a thermally active material. An ionic liquid with lower critical solution temperature is mixed within hydrogel to demonstrate a hydrogel confined ionic system (HCIS). This particular system turns turbid as the temperature exceeds an established temperature threshold, which is adjustable through applying different concentrations of HCl or NaCl. The system offers straightforward images of the spatial thermal distribution whether simple or sophisticated, which is fully in line with computational simulation. The system is further demonstrated with great promise for the application in fire warning to lower the threat induced by electrical failure. The HCIS opens a practical avenue to visualize thermal distribution and improve our thermal regulation efficiency.Activin A levels are elevated during multiple severe infections and associated with an increased risk of death. However, the role of activin A in bacterial infection is still unclear. Here, we found that activin A levels were increased during S. aureus skin infection in mice. Administration of activin A increased the bacterial burden and promoted the spread of bacteria in vivo. Moreover, activin A inhibited neutrophil chemotaxis to N-formylmethionine-leucyl-phenylalanine via the type IIA activin receptor (ActRIIA) in vitro and impaired ActRIIA+ neutrophil recruitment to infection foci in vivo. Additionally, we identified a novel subpopulation of neutrophils, ActRIIA+ neutrophils, which exhibit superior phagocytic capacity compared to ActRIIA- neutrophils and possess an N2-like immunoregulatory activity via secreting IL-10 and TGF-β. Taken together, these findings indicate that activin A inhibits the recruitment of ActRIIA+ neutrophils to infected foci, leading to the impairment of bacterial clearance, and thus may hamper early infection control.Social hierarchy plays important roles in maintaining social structures. Despite similarity in concept, frameworks of human hierarchy have seldom been investigated in parallel with other animals. Moreover, the importance of subordination in hierarchical formation has been largely underestimated in previous research. Here we established, compared, and investigated hierarchy in children and weanling mice. Temperament assessments suggested that children who are less persistent, low emotional intensity, and withdrew easily were more likely to be subordinate in competitive scenarios independent of task characteristics and interaction experiences. The tube test further showed that conflicts between mice were not resolved by winner approach but by loser withdrawal, which was mainly determined by intrinsic subordinate status regardless of opponents. Our study presents evolutionary conserved hierarchical relationships in young and a critical role of the intrinsic subordinate characteristics in hierarchical determination.