https://www.selleckchem.com/products/nvp-cgm097.html Efforts should be devoted to identifying POP pesticide sources and upgrading MWTPs with other technologies to ensure the ecological safety of rivers.Magnesium oxide/expanded graphite (MgO/EG) catalyst was synthesized and applied for enhancing the degradation of Cu-ethylenediaminetetraacetic acid (Cu-EDTA) in an aqueous solution. The MgO/EG catalyst was characterized by XRD, SEM, EDS, and FTIR. For assessing the catalytic activity of MgO/EG, essential influencing factors were investigated including catalyst dosage, O3 dosage, initial pH, initial Cu-EDTA concentration, and coexisting ions. The results show that the catalytic material showed high catalytic oxidation capacity for the Cu-EDTA removal in the MgO/EG/O3 system. 100% of Cu(II) and 73.2% of TOC removal efficiency could be achieved in the MgO/EG/O3 system at the reaction times of 90 min. This efficiency was higher than that seen for other systems, including O3 alone (Cu(II) 81.4%/TOC 60.6%), EG/O3 (84.2%/64.1), MgO/EG ( less then 4%/ less then 4%), and EG ( less then 4%/ less then 4%). A small decrease in the Cu(II) and TOC removal rate was observed after three runs in the stability and reusability experiments of the catalyst. Assays with radical scavenging experiments confirmed that MgO/EG-mediated oxidation was dependent on a hydroxyl radical pathway. The UV-vis spectra confirmed that the absorption peak of Cu-EDTA was gradually decreased and finally disappeared.Risk assessment of toxicants mainly is a result of experiments with single substances. However, toxicity in natural ecosystems typically does not result from single toxicant exposure but is rather a result of exposure to mixtures of toxicants. It is not surprising a mixture of toxicity is a subject of eco-toxicological interest for several decades. A quantitative structure-activity relationships (QSAR)-based approach is an attractive approach to assessing the joint effects in the binary mixtures. T