Low limits of detection (i.e., 0.65 and 2.2 ng·mL-1) were obtained using the simplified sample preparation method. The recoveries were in the range 91-113.3 % with intra-day and inter-day precisions of ≤9.6 %. Further experimental results proved the method to be versatile for various hydrophilic toxins. A self-made microporous molecular sieve CS-Z1 has been found to have excellent adsorption performance for small molecular nitrile and pyridine pollutants in acrylonitrile production wastewater. In order to explore its adsorption mechanism, the adsorption kinetics, isotherms and thermodynamics of CS-Z1 for eight nitrile and pyridine organic pollutants with different structures and properties were investigated. Meanwhile, the analysis of molecular dynamics simulation based on density functional theory was conducted to revel the adsorption-diffusion process of different organic pollutants on the surface and in the pores of CS-Z1. Both the experimental and simulated results verified the shape-selective adsorption mechanism of CS-Z1 for these organic pollutants. The adsorption processes of CS-Z1 for these pollutants were spontaneous physical adsorption, and the adsorption efficiency of CS-Z1 mainly depended on the molecular size of pollutant. Benefitting from the flexible crystalline structure of CS-Z1 and the breathing vibration of CS-Z1 orifices, it could adsorb some pollutants with slightly larger size than its pore diameter. Molecular dynamics simulation results visually display the shape-selective adsorption process of CS-Z1 for these pollutants through the respiratory effect of CS-Z1 molecular sieve orifices. Environmental pollution has always been a global concern, e.g. water eutrophication caused by the high concentrations of phosphorous. It is especially important to detect harmful substances conveniently, quickly and accurately. This study reports a free-standing electrode composed of Ni foam (NF) and in situ grown nanoflakes and nanoflower-like Ni hydrated hydroxide (NHH) on the NF surface (NHH/NF) by a one-step hydrothermal method for phosphate detection. The NHH/NF electrode was directly applied as a binder-free and conductive agent-free working electrode in a three electrode system and showed a wide linear detection range of 10-50,000 μM, high sensitivities of 210 and 87 μA mM-1 cm-2 for the phosphate concentration ranges of 10-14,000 and 14,000-50,000 μM, respectively, and a fast response time of 6 s for phosphate detection in a NaOH solution (pH≈11). The nanostructure of the NHH layer not only provided a large surface area and rapid electron transfer but also protected the NF substrate from being degraded by the electrolyte and interfering species, thereby achieving good stability and selectivity. In addition, for artificial and real wastewater detection, the good recover ability presented here improves the prospects of developing a cost-effective, simple, and accurate sensor for phosphate detection. Cationic surfactants are surface-active compounds that can be found in many products, including household and cleaning agents. As a consequence, they tend to be discarded into water streams, ultimately ending up in the aquatic environment. In spite of this environmental issue, studies describing their effects towards marine species are lacking. The aim of this study was therefore to evaluate the short-term exposure effects of two commercial cationic surfactants and three novel gemini surfactants on four marine species, the green microalgae Nannochloropsis gaditana and Tetraselmis chuii, the diatom Phaeodactylum tricornutum, and the crustacean Artemia salina. Furthermore, biodegradation and size distribution of the cationic surfactants in artificial seawater were also studied by UV-vis spectrophotometry and dynamic light scattering, respectively. Ecotoxicity tests revealed that the commercial cationic surfactant N-cetyl-N,N,N-trimethylammonium bromide is toxic to all tested marine species while N-dodecyl-N,N,N-trimethylammonium chloride and 1,4-bis-[N-(1-dodecyl)-N,N-dimethylammoniummethyl]benzene dibromide showed the lowest toxicity among the tested cationic surfactants. Besides the novel insights regarding the effects caused by these five cationic surfactants, this work opens prospects for the replacement of commercially available surfactants by more environmentally friendly alternatives. Photovoltaic (PV) technology such as solar cells and devices convert solar energy directly into electricity. Compared to fossil fuels, solar energy is considered a key form of renewable energy in terms of reducing energy-related greenhouse gas emissions and mitigating climate change. To date, the development and improvement of PV technologies has received substantial attention; however, their potential environmental risks remain unknown. Therefore, this review focuses on the potential risks of leachates derived from solar cell devices. We collect scientific literature on toxicity and leaching potential, tabulate the existing data, and discuss related challenges. Insufficient toxicity and environmental risk information currently exists. However, it is known that lead (PbI2), tin (SnI2), cadmium, silicon, and copper, which are major ingredients in solar cells, are harmful to the ecosystem and human health if discharged from broken products in landfills or after environmental disasters. Several research directions and policy initiatives for minimizing the environmental risks of PV technology are suggested. This review contributes to both solar energy and environmental science research. Although silver ion in the solution is an important factor affecting the biodissolution of chalcopyrite, the effect of silver ion on the release of copper ion from chalcopyrite to the environment has not been explored until now. In order to fill this knowledge gap, the effect of silver ion on copper release from chalcopyrite in the presence of Acidithiobacillus ferrooxidans was investigated. https://www.selleckchem.com/products/sw-100.html The results indicate that silver ion significantly enhanced chalcopyrite biodissolution, thereby releasing more copper ion. In turn, this indicates that the release of copper ion from chalcopyrite to the environment was increased under these conditions. Biodissolution results, bacterial adsorption experiments, elemental composition analysis, and electrochemical analysis reveal that the enhancement of silver ion on copper ion release from chalcopyrite was mainly attributed to the improvement of electrochemical activity of chalcopyrite and the inhibition of the formation of passivation layer (Sn2-/S0) on the chalcopyrite surface.