Pemafibrate is a new generation of anti-hyperlipidemia drugs. However, its poor solubility in water (0.410 mg/mL at 25 °C) has limited its oral bioavailability. In this study, we aimed to improve the solubility and consequently the oral bioavailability of pemafibrate via a new polymorph. A new polymorph Form II was successfully obtained by controlling the crystallization temperature and characterized by multiple analysis methods. https://www.selleckchem.com/products/su5402.html The thermodynamic properties of Form I and Form II are almost the same, the melting points of crystal Form I [differential scanning calorimetry (DSC) onset 97.5 °C, melting entropy -76 J/g] and crystal Form II (DSC onset 96.6 °C, melting entropy -80 J/g) are very close, and the crystallinity of both is very high. In pure water, Form II is about 1.9 times that of Form I in terms of the intrinsic dissolution rate (IDR) and powder solubility. In medium, the IDR characterization was performed in a pH 6.8 buffer. The solubility of this Form II in 0.1 M HCl (pH 1.0) and phosphate buffers (pH 6.8) was investigated, and the results showed that the solubility of Form II was 2.1 and 2.0 times that of Form I, respectively. The crystal structure of Form II shows that the hydrophilic carboxyl groups of the compound are arranged outside the unit cell, which may be the reason for the increased solubility. We also studied the pharmacokinetics of beagle dogs. The mean AUC0-24h of Form II is about 2.6 times that of Form I, indicating that the solubility and bioavailability of pemafibrate can indeed be improved by forming the new polymorph Form II. It may become an ideal solid form of active pharmaceutically ingredient suitable for pharmaceutical preparations, and it can be further studied in the later period.Aqueous polyurethane dispersion (PUD) has attracted increasing attention in a wide range of industrial applications because of their versatile properties as well as ecofriendly nature. In this study, the aqueous PUD used in warp-knitted vamp printing was characterized by Fourier transform infrared spectra, dynamic light scattering, and laser Doppler electrophoresis. The mean diameter and zeta potential are 206.6 nm and -18.3 mV, respectively. The rheological behavior of aqueous PUD as a function of shear rate, temperature, and solid content was investigated experimentally. Besides, a new correlation model was proposed based on the Carreau equation and Arrhenius relation. The resulting model has high accuracy in viscosity estimation under complex conditions according to the prediction interval of 95%. Furthermore, the reasonable ranges of parameters were proposed theoretically for successful printing.Polyoxometalate (POM)-based metal-organic framework (MOF)-derived Co3O4/CoMoO4 nanohybrids were successfully fabricated by a facile solvothermal method combined with a calcination process, in which a Co-based MOF, that is, ZIF-67 acts as a template while a Keggin-type POM (H3PMo12O40) serves as a compositional modulator. The materials were characterized through scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) mapping, and electrochemical measurements. When the Co3O4/CoMoO4 nanohybrids were applied as anode materials for lithium-ion batteries (LIBs), they display large lithium storage capacity (around 900 mAh g-1 at 0.1 A g-1) and high cycling stability, and they can also exhibit good rate performances. This work might shed some light on the POM-based MOF host-guest synthesis strategy for the preparation of polymetallic oxides for enhanced electrochemical energy storage and further applications.Riboflavin (RF) is a well-known photosensitizer, responsible for the light-induced oxidation of methionine (Met) leading to the spoilage of wine. An NMR approach was used to investigate the role of gallic acid (GA) and sulfur dioxide (SO2) in the RF-mediated photo-oxidation of Met. Water solutions of RF and Met, with and without GA or SO2, were exposed to visible light for increasing time in both air and nitrogen atmospheres. Upon light exposure, a new signal appeared at 2.64 ppm that was assigned to the S(O)CH3 moiety of methionine sulfoxide. Its formation rate was lower in a nitrogen atmosphere and even lower in the presence of GA, supporting the ability of this compound in quenching the singlet oxygen. In contrast, SO2 caused relevant oxidation of Met, moderately observed even in the dark, making Met less available in donating electrons to RF. The competition of GA versus Met photo-oxidation was revealed, indicating effectiveness of this antioxidant against the light-dependent spoilage of wine. A pro-oxidant effect of SO2 toward Met was found as a possible consequence of radical pathways involving oxygen.Epoxy resin adhesives are widely used for joining metal alloys in various industrial fields. To elucidate the adhesion mechanism microscopically, we investigated the interfacial interactions of epoxy resin with hydroxylated silica (0 0 1) and γ-alumina (0 0 1) surfaces using periodic density functional theory calculations as well as density of states (DOS) and crystal orbital Hamilton population (COHP) analyses. To better understand the interfacial interactions, we employed and analyzed water and benzene molecules as hydrophilic and hydrophobic adsorbates, respectively. Structural features and calculated adhesion energies reveal that these small adsorbates have a higher affinity for the γ-alumina surface than that for the silica surface, while a fragmentary model for the epoxy resin exhibits a strong interaction with the silica surface. This discrepancy suggests that the structural features of the hydroxylated silica surface dictate its affinity to a specific species. Partial DOS and COHP curves provide evidence for the presence of OH-π interactions between the OH groups on the surfaces and the benzene rings of the epoxy resin fragments. The orbital interaction energies of the H-bonding and OH-π interactions evaluated from the integrated COHP indicate that the OH-π interaction is a nonnegligible origin of the adhesion interaction, even when polymers with hydrophobic benzene rings are adsorbed on hydroxylated surfaces.