https://www.selleckchem.com/products/vb124.html An amendment to this paper has been published and can be accessed via a link at the top of the paper.Fast liquid jets are investigated for use as a needle-free drug delivery system into an elastic tissue such as skin. Using smaller jet diameters in a repetitive regime can mitigate bruising and pain associated with current injectors. In this study, we aim to unravel the potential of the method to deliver liquids into biological tissues having higher elasticity than healthy skin (i.e >60 kPa). To address this challenge, we have implemented a laser-based jetting system capable of generating supersonic liquid microjets in a repetitive regime. We provide insights on the penetration of microjets into hydrogel samples with elastic modulus ranging from 16 kPa to 0.5 MPa. The unprecedented speeds of injection (>680 m/s) together with a newly introduced repetitive regime opens possibilities for usage in needle-free drug administration into materials with elasticity covering the wide spectrum of biological soft tissues like blood vessels, all skin layers, scarred or dried skin or tumors.Corydalis Rhizoma is the tuber of Corydalis yanhusuo W. T. Wang, which has been long used in traditional Chinese medicine. Herein, the quality of C. yanhusuo samples collected from 23 regions of three provinces in China is evaluated through high-performance liquid chromatography fingerprinting coupled with similarity, hierarchical clustering, and principal component analyses. Sample similarities are evaluated according to the State Food and Drug Administration requirements by selection of 18 characteristic chromatographic fingerprint peaks and are found to vary between 0.455 and 0.999. Moreover, common patterns of a typical local variety of C. yanhusuo sourced in the Panan County are established. The obtained results show that the combination of quantitative analysis and chromatographic fingerprint analysis can be readily utilized for quality cont