https://www.selleckchem.com/products/fgf401.html Treatment of atrophic non-unions, especially in long bones is a challenging problem in orthopedic surgery due to the high revision and failure rate after surgical intervention. Subsequently, there is a certain need for a supportive treatment option besides surgical treatment. In our previous study we gained first insights into the dynamic processes of atrophic non-union formation and observed a prolonged inflammatory reaction with upregulated TNF-α levels and bone resorption. In this study we aimed to improve bone regeneration of atrophic non-unions via TNF-α modulation in a previously established murine femoral segmental defect model. Animals that developed atrophic non-unions of the femur after 5 and 10 weeks were treated systemically for 10 and 5 weeks with Etanercept, a soluble TNF-α antibody. μCT scans and histology revealed bony bridging of the fracture gap in the treatment group, while bone formation in control animals without treatment was not evident. Moreover, osteoclasts were markedly decreased via modulation of the RANKL/OPG axis due to Etanercept treatment. Additionally, immunomodulatory effects via Etanercept could be observed as further inflammatory agents, such as TGF-β, IL6, MMP9 and 13 were decreased in both treatment groups. This study is the first showing beneficial effects of Etanercept treatment on bone regeneration of atrophic non-union formation. Moreover, the results of this study provide a new and promising therapeutic option which might reduce the failure rate of revision surgeries of atrophic non-unions. Hip fracture patients have severe deterioration of their quality of life and function after their injury. Markers of malnutrition such as low albumin and low body mass index (BMI) have been shown to increase mortality and complication rates but their effect on recovery of quality of life and function after hip fracture surgery is unclear. The main aim of this paper is to further investigate