Additionally, intelligent fiber devices with shapes tailored by microfluidic approaches are discussed, including 1D sensors and actuators, luminous fibers, and devices for encoding, energy harvesting, water collection, and tissue engineering applications. Finally, recent progress, challenges, and future perspectives of the microfluidic approaches for fiber device fabrication are discussed.Cerebral stroke, a common clinical problem, is the predominant cause of disability and death worldwide. Its prevalence increases and infarctions exacerbate with age. A Tibetan plant, Brassica rapa L., possesses multiple medicinal effects, such as anti-altitude sickness, anti-hyperlipidemia and anti-fatigue, as mentioned in the noted ancient Tibet pharmacopeia "The Four Medical Tantras". Our preliminary studies also showed the anti-hypoxia protection mechanism of B. rapa L., implying its possible relationship with anti-ischemic neuroprotection. However, the potential molecular mechanism of the active constituent of turnip against cerebral ischemia/reperfusion remains unclear. In our study, oxidative stress markers, including LDH, ROS, SOD, GPx and CAT were assayed. In controlled in vitro assays, we found that the turnip's active constituent had remarkable anti-hypoxia capability. We further showed the profound effects of the active constituent of turnip on the levels of apoptosis-related proteins, including Bax, Bcl-2 and caspase-3, which contributed to its anti-inflammatory activity. Western blot analysis results also implied that active-constituent pretreatment reversed the diminished expression of the PI3K/Akt/mTOR pathway mediated by oxygen glucose deprivation/reperfusion (OGD/R); further experimental evidence showed that the protective role was limited in the PI3K inhibitor (LY294002) treatment group. Our results demonstrated that the functional monomer of B. rapa L. https://www.selleckchem.com/EGFR(HER).html exerted a neuroprotective effect against OGD/R-induced HT22 cell injury, and its potential mechanism provides a scientific basis for future clinical applications and its use as a functional food.We have carried out an extensive search for stable polymorphs of carbon nitride with C3N5 stoichiometry using the minima hopping method. Contrary to the widely held opinion that stacked, planar, graphite-like structures are energetically the most stable carbon nitride polymorphs for various nitrogen contents, we find that this does not apply for nitrogen-rich materials owing to the high abundance of N-N bonds. In fact, our results disclose novel morphologies with moieties not previously considered for C3N5. We demonstrate that nitrogen-rich compounds crystallize in a large variety of different structures due to particular characteristics of their energy landscapes. The newly found low-energy structures of C3N5 have band gaps within good agreement with the values measured in experimental studies.The discovery of H3S and LaH10 is an important step towards the development of room temperature superconductors which fuels the enthusiasm for finding promising superconductors among hydrides at high pressure. In the present study, three new and stable stoichiometric MoH5, MoH6 and MoH11 compounds were found in the pressure range of 100-300 GPa. The highly hydrogen-rich phase of Cmmm-MoH11 has a layered structure that contains various forms of hydrogen H, H2- and H3- units. It is a high-Tc material with an estimated Tc value in the range of 165-182 K at 250 GPa. The same structures are also found in NbH11, TaH11, and WH11, each material showing Tc ranging from 117 to 168 K. By combining the method of using two coupling constants λopt and λac, and two characteristic frequencies (optical and acoustic) with first-principle calculations, we found that the high values of Tc are mainly caused by the presence of high frequency optical modes, but the acoustic modes also play a noticeable role.Tumor-derived exosomes have been recognized as promising biomarkers for early-stage cancer diagnosis, tumor prognosis monitoring and individual medical treatment. However, it is a huge challenge to separate exosomes from trace biological samples in clinics for disease diagnosis. Herein, we propose a simple, quick, and label-free method for isolating circulating exosomes from serum of patients. The strategy synergistically integrates chitosan electrostatic-adsorption, micro-patterned substrates, and microfluidic shuttle flow control to enable the capture/release of circulating exosomes in a simple manner. Using this microchip, we can isolate exosomes from trace samples (10 μl) with relative purity over 90% and high RNA recovery ratio over 84% within 15 minutes, which is impossible for traditional ultracentrifugation methods. We then validate the application of the microchip using 24 serum samples from clinical breast cancer and breast fibroma patients. The isolated exosomes are subjected to miRNA sequencing and RT-PCR, followed by pathway prediction analysis. The results showed that exosomes were relevant to the invasion and metastasis of breast cancer cells and hsa-miR-18a-3p might have the potential to become a new biomarker for distinguishing breast cancer from breast fibroma (AUC = 0.83, P value = 0.019). This established method is simple, quick and easy to operate with integration. And it may pave a new way for clinical research on exosomes and tumor relevant diagnosis.Trimethylamine N-oxide (TMAO), a gut microbial metabolite involved in cardiovascular and kidney diseases, has great potential as a biomarker, thus making TMAO quantification of great significance. The current assay methods are mainly established on mass spectrometry. However, the classic enzymatic approach is absent, which may be because there is no appropriate single-enzyme reaction. Here, we prepared TMAO demethylase and formaldehyde dehydrogenase and found that these two bacterial enzymes catalyze an efficient coupled reaction that produces NADH from TMAO conversion. With the participation of another enzyme, diaphorase, the multienzymatic coupling system was constructed, which realizes the output of fluorescence signals from TMAO input using resazurin as a probe, thus laying the foundation for fluorescent assay. Through optimization, the sensitivity and specificity were improved. A pretreatment procedure was developed to eliminate formaldehyde that pre-exists with TMAO to avoid an interference effect. Our assay is suitable for quantifying serum TMAO in the range of 2.