https://www.selleckchem.com/products/bicuculline.html C-X-C chemokine receptor 4 (CXCR4) is highly expressed in cancers, contributing to proliferation, metastasis, and a poor prognosis. The noninvasive imaging of CXCR4 can enable the detection and characterization of aggressive cancers with poor outcomes. Currently, no 18F-labeled CXCR4 positron emission tomography (PET) radiotracer has demonstrated imaging contrast comparable to [68Ga]Ga-Pentixafor, a CXCR4-targeting radioligand. We, therefore, aimed to develop a high-contrast CXCR4-targeting radiotracer by incorporating a hydrophilic linker and trifluoroborate radioprosthesis to LY2510924, a known CXCR4 antagonist. A carboxy-ammoniomethyl-trifluoroborate (PepBF3) moiety was conjugated to the LY2510924-derived peptide possessing a triglutamate linker via amide bond formation to obtain BL08, whereas an alkyne ammoniomethyl-trifluoroborate (AMBF3) moiety was conjugated using the copper-catalyzed [3+2] cycloaddition click reaction to obtain BL09. BL08 and BL09 were radiolabeled with [18F]fluoride ion using 18F-19F p.i., respectively). In conclusion, [18F]BL08 and [18F]BL09 enable high-contrast visualization of CXCR4 expression in Daudi xenografts. Based on high tumor-to-organ ratios, [18F]BL08 may prove a valuable new tool for CXCR4-targeted PET imaging with potential for translation. The use of a PepBF3 moiety is a new approach for the orthogonal conjugation of organotrifluoroborates for 18F-labeling of peptides.A triple-tandem protocol for the synthesis of the pyrrolizidinone skeleton has been devised. It involves a cross metathesis-intramolecular aza-Michael reaction-intramolecular Michael addition tandem sequence, starting from N-pentenyl-4-oxo-2-alkenamides and conjugated ketones. In the presence of two cooperative catalysts, namely the second-generation Hoveyda-Grubbs catalyst and (R)-TRIP-derived BINOL phosphoric acid, this multiple-relay catalytic process takes place in good yields and outstanding levels of di