https://www.selleckchem.com/products/trastuzumab-emtansine-t-dm1-.html The present study focussed on recovering the valuable carbon resources from agro-residues (wheat straw, rice husk) and waste plastics (polypropylene, polystyrene) using microwave pyrolysis and co-pyrolysis. The main objective of this study is to investigate the effect of the susceptor blending mechanism on the co-pyrolysis product distribution. Graphite was mixed with feedstock in a new approach to achieving homogeneity, and microwave power of 600 W was used. The average heating rate (52-67 (°C/min)), microwave energy required (2267-2936 (J/g)), heat energy utilized (1410-1444 (J/g)), and conductive heat losses (85-110 (J/g)) were analyzed. The selectivity of cyclic alkanes and alkenes (65.5%) was found to be high in polypropylene pyrolysis oil. Polystyrene pyrolysis oil predominantly contained cyclooctatetraene (61%) compound. Bio-oil obtained from wheat straw predominantly contained aromatic hydrocarbons (85%), whereas rice husk oil also contains high selectivity aromatic hydrocarbons (37.8%) along with aliphatic hydrocarbons (54.9%). The co-pyrolysis oils has high selectivity of aromatics.The valorization of organic waste into lactic acid (LA) via co-digestion has attracted tremendous research interests in recent years. This study investigated the feasibility of intensifying the LA accumulation from anaerobic digestion (AD) of swine manure (SM) by adding apple waste (AW) or potato waste (PW). Results indicated that AW or PW obviously enhanced the accumulation of LA, and when the optimal mixing ratio of AW or PW to SM of 7525, the maximum concentrations of LA were 27.61 and 8.91 g COD/L, which were around 3.53- and 1.14-folds of that of the mono-digestion of SM, respectively. Meanwhile, the co-digestion of SM and AW showed significantly higher LA production than that of SM and PW (p less then 0.05). High reducing sugar content of AW contributed to LA accumulation in AD process. In addition, AW