https://www.selleckchem.com/products/mst-312.html 8% and 95.8%, but no precipitate was found in 1.0-10 mM oxalate-Cr-NaBH4 systems. This is related to whether there was a sufficient oxalate dosage, which could be complexed with Cr (III) at a molar ratio of 11. The precipitates were analysed by means of electron spin resonance (ESR), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR), indicating that Cr (III) could support oxalate coprecipitation. The results of the present study reveal the influence of oxalate on Cr(VI) reduction and subsequent Cr (III) precipitation, which are of great significance to the application of NaBH4 in the treatment of industrial wastewater containing Cr(VI)-oxalate.In this study, a novel sponge biocarriers (SB) in moving bed bioreactor (MBBR) treating recirculating aquaculture systems wastewater was evaluated for the first time. Two lab-scale MBBRs were operated simultaneously for 116 days under various hydraulic retention times (HRTs). The reactors R1 and R2 were filled with K5 plastic carriers and SB, respectively. From the results, at an optimum HRT of 6 h, ammonia removal efficiency and nitrification rate were 86.67 ± 2.4% and 1.43 mg/L.h for the R1 and, 91.65 ± 1.3% and 1.52 mg/L.h for the R2, respectively. The microbial community analysis showed that the predominant genera in the nitrifying community were Nitrosomonas (AOB) and Nitrospira (NOB) in co-existence with heterotrophic genera Hyphomicrobium, Mesorhizobium, Zhizhongheella, and Klebsiella spp. Modified Stover-Kincannon model examined the ammonia removal kinetics, and the values of kinetic parameters obtained were Umax 0.909 and 1.111 g/L.d and KB 0.929 and, 1.108 g/L.d for the R1 and R2, respectively. The correlation coefficients (R2) of the MBBRs were higher than 0.98, indicating that the model adequately described the experimental data. Overall, MBBR, filled with the proposed novel SB operated at 6 h HRT, can achieve