https://www.selleckchem.com/products/s961.html The importance of studying polyphenolic compounds as natural antioxidants has encouraged the search for new methods of analysis that are quick and simple. The synthesis of silver nanoparticles (AgNPs) using plant extracts has been presented as an alternative to determine the total polyphenolic content and its antioxidant activity. In this study, aqueous leaf extract of , a species of plant endemic to South America, was used to produce AgNPs. The technique of oxygen radical absorption capacity using fluorescein (ORAC-FL) was used to measure antioxidant activity. The oxidation of the 2´,7´-dichlorodihydrofluorescein diacetate (DCFH -DA) as fluorescent probe was used to measure cellular antioxidant activity (CAA). Electrochemical behavior was also examined using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Total polyphenolic content (TPH) was analyzed using the Folin-Ciocalteu method, and the major polyphenolic compound was analyzed by high performance liquid chromatography with diodesing AgNPs can be used as a fast analytical tool to monitor the presence of water-soluble polyphenolic compounds from plant origin. Analysis and detection of new antioxidants from plant extracts may be potentially applicable in biomedicine. It is concluded that the aqueous extract of the leaves of S. mammosum contains nontoxic antioxidant compounds capable of producing AgNPs. The methods using AgNPs can be used as a fast analytical tool to monitor the presence of water-soluble polyphenolic compounds from plant origin. Analysis and detection of new antioxidants from plant extracts may be potentially applicable in biomedicine.Advanced research has revealed the crucial role of tumor microenvironment (TME) in tumorigenesis. TME consists of a complicated network with a variety of cell types including endothelial cells, pericytes, immune cells, cancer-associated fibroblasts (CAFs), cancer stem cells (CSCs) as well as the extrace