https://www.selleckchem.com/products/sop1812.html Bluetooth Low Energy (BLE) has become a major wireless technology for the Internet of Things (IoT). Recent efforts of academia, industry and standards development organizations have focused on creating BLE mesh network solutions. 6BLEMesh is a specification being developed by the IETF that defines an IPv6-oriented approach for BLE mesh networking. In this paper, we perform an experimental evaluation of 6BLEMesh, based on a real implementation. We evaluate latency, round trip time (RTT) and energy consumption. For the latter, we model the device current consumption, we determine the energy efficiency of communication, and we obtain the theoretical device lifetime (for battery-operated devices), for three different hardware platforms. Under the assumptions in our study (including a simple 235 mAh battery, and periodic data transmission), the maximum, asymptotic, device lifetime is 573 days, whereas battery-operated router devices can also achieve 3-digit lifetimes (in days) in many scenarios. Our results also illustrate the impact on performance of BLE-level and application-level parameter settings, adaptation layer mechanisms such as IPv6 header compression, and device hardware characteristics.With the recent advances in the area of OPC UA interfacing and the continuously growing requirements of the industrial automation world, combined with the more and more complex configurations of ECUs inside vehicles and services associated to car to infrastructure and even car to car communications, the gap between the two domains must be analyzed and filled. This gap occurred mainly because of the rigidness and lack of transparency of the software-hardware part of the automotive sector and the new demands for car to infrastructure communications. The issues are related to protocols as well as to conceptual views regarding requirements and already adopted individual directions. The industrial world is in the Industry 4.0 era, an