https://www.selleckchem.com/products/rmc-4550.html Lateral flow immunoassays (LFIs) can be used to detect intact bacteria or spores; when gold nanoparticles (AuNPs) are used as the signal reporters, the detection limits are very low. Spore-based surface display has been widely studied for enzyme immobilization and live-nontoxic oral vaccines. In this study, recombinant spores were used to improve the sensitivity of a LFI. We developed a test kit that combines streptavidin-displayed spores with a LFI assay for rapid protein detection. The recombinant spores served as a signal amplifier and AuNPs were used as the signal reporters. For detection of β-galactosidase, which was used as the model protein, the detection limit was about 10-15 mol, while that of the conventional LFI is about 10-12 mol. In both methods, nanogold was used as the colorimetric signal and could be observed with the naked eye. This method improved LFI sensitivity without sacrificing its advantages. Furthermore, enhanced green fluorescent protein (eGFP) was also displayed on the surface of the streptavidin-displayed spores. Without AuNPs, the fluorescent recombinant spores acted as the signal, which could be detected by a fluorescence detector, such as a fluorescence microscope. The detection limit was 10-16 mol under fluorescence microscopy whose magnification was 25-fold. Therefore, in conclusion, in this proof of concept study, the detection limits of both proposed methods were far superior to those of traditional LFI assay.A simple fluorescence detection platform has been established for acetamiprid assay based on DNA three-way junctions (TWJs), which can triple the fluorescence signal without any other amplification. It is designed with three single-stranded DNAs (ssDNA), each of which contains one-third or two-thirds of the G-quadruplex sequence at each end. Upon the addition of acetamiprid, the conformation of the aptamer-containing double-stranded DNA (dsDNA) changes from its original confor