This report reveals the effects of salt on the photosynthetic electron transport and transcriptome of the glycophyte Setaria viridis (S. https://www.selleckchem.com/products/hc-258.html viridis) and its salt-tolerant close relative halophyte Spartina alterniflora (S. alterniflora). S. viridis was unable to survive exposed to sodium chloride (NaCl) levels higher than 100 mM, in contrast, S. alterniflora could tolerate NaCl up to 550 mM, with negligible effect on gas exchange related parameters and conductance of electrons transport chain (gETC). Under salt, the prompt fluorescence (OJIP-curves) exhibits an increase in the O- and J-steps in S. viridis and much less for S. alterniflora. Flowing NaCl stress, a dramatic decline in the photosystem II (PSII) primary photochemistry was observed for S. viridis, as reflected by the drastic drop in Fv/Fm, Fv/Fo and ΦPSII; however, no substantial change was recorded for these parameters in S. alterniflora. Interestingly, we found an increase in the primary PSII photochemistry (ΦPSII) for S. alterniflora with increasing NaCl on metabolic pathways in S. viridis and we found a number of transcription factors potentially related to NaCl responses. For S. alterniflora, no major changes in the transcriptomic levels were recorded under NaCl stress. To confirm our data analysis of RNA-seq, we performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis for randomly selected four genes for each species (8 genes in total) and we found that our results (up- and/or down-regulated genes) are fully consistent and match well our RNA-seq data. Overall, this study showed drastically different photosynthetic and transcriptomic responses of a salt-tolerant C4 grass species and one salt-sensitive C4 grass species to NaCl stress, which suggests that S. alterniflora could be used as a promising model species to study salt tolerance in C4 or monocot species.In a viable but nonculturable (VBNC) state, bacteria are no longer culturable on standard laboratory media, but still, remain a pathogenic potential and present possible health risks. In this study, we investigated ampicillin's ability, which is commonly used in dairy cattle disease treatment, to induce Cronobacter sakazakii into the VBNC state. After treatment with ampicillin, the counts of culturable cells decreased from 108 CFU/mL to an undetected level 7-30 days post-treatment. Meanwhile, viable cells were still approximately 104-105 cells/mL, and could be resuscitated under appropriate conditions. Fluorescence microscopy showed that VBNC cell maintained apparent cellular integrity, but that the morphology of VBNC cells differed visibly from that of normal cells. Moreover, the respiratory chain activity of VBNC cells were confirmed by flow cytometry (FCM) analysis, suggesting that cells in a VBNC state were physiologically active. Finally, transcriptomics analysis and real-time PCR (qPCR) validation were used to explore the underlying mechanisms of VBNC cell formation. Over-expression of relA, lon, ppx, and ppk in the toxin-antitoxin (TA) trigger system contributed to VBNC cell formation. In the TA trigger system, RelA and exopolyphosphatases/guanosine pentaphosphate phosphohydrolases (PPX/GPPA) synthesize ppGpp, which activates polyphosphate kinase (PPK), the cellular enzyme that accumulates plyphosphate (PolyP). PolyP combines with and stimulates Lon to degrade the antitoxins, thereby activating the toxins that induce a VBNC state. The results of our research will facilitate a better understanding of the survival strategies that bacteria develop to deal with ampicillin pressure and the health risks associated with VBNC Cronobacter sakazakii induced by antibiotics.Listeria monocytogenes can form long-lasting biofilms on food-contact surfaces. Lactic acid bacteria (LAB) have shown promise in antagonizing this microorganism in liquid media. However, the ecological relationships differ when cells are forming biofilms. In this work, we propose the use of Lactobacillus biofilms as surface "conditioners" to modulate the adhesion of L. monocytogenes. For this, the biofilm formation ability of Lactobacillus fermentum MP26 and Lactobacillus salivarius MP14 (human milk origin), fluorescently labeled by transfer of the mCherry-encoding pRCR12 plasmid, was first evaluated. Then, mature biofilms of these strains transformed with pRCR12 for expressing the fluorescent protein mCherry were used as adhesion substrate for GFP-tagged L. monocytogenes Scott A. The resulting biofilms were studied in terms of cellular population and attached biomass (cells plus matrix). Species distribution inside the biofilm structure was revealed by confocal laser scanning microscopy (CLSM). Although none of the Lactobacillus spp. strains reduced the adhesion of L. monocytogenes Scott A, species interactions seem to interfere with the synthesis of extracellular polymeric substances and species distribution inside the biofilms. In dual-species biofilms, CLSM images revealed that Lactobacillus cells were trapping those of L. monocytogenes Scott A. When surfaces were conditioned with Lactobacillus biofilms, the spatial distribution of L. monocytogenes Scott A cells was species-specific, suggesting these interactions are governing the ultimate biofilm structure. The results here obtained open new possibilities for controlling L. monocytogenes dispersal using these Lactobacillus spp. biofilms as a "natural" immobilization way. Whether species interactions could modify the virulence of L. monocytogenes still remains unclear.Neoceratitis asiatica (Diptera Tephritidae) is a disastrous pest for wolfberry production in China. In our preliminary field trapping experiment, both female and male N. asiatica adults were captured by male-produced sex attractant. To provide a solid background for studying mechanism of olfaction, the sensilla of antenna and maxillary palp of N. asiatica adults were studied by means of scanning electron microscopy. Both sexes have 3 antennal segments, including scape, pedicel, and flagellum, while arista is arisen from the proximal dorsal ridge of the flagellum. Two types of sensilla were found on the scape and pedicel, sensilla microtrichia (AnMi) and sensilla chaetica (AnCh). There are five types of sensilla on the flagellum, sensilla basiconica (AnB), clavate sensilla (AnCl), sensilla trichoidea (AnTr), sensilla coeloconica (AnCo), and AnMi. Three types of sensilla were observed on maxillary palp, sensilla basiconica (MpB), sensilla microtrichia (MpMi), and sensilla chaetica (MpCh). AnMi and MpMi are the most abundant sensilla type on antenna and maxillary palp, respectively.