https://www.selleckchem.com/products/folinic-acid.html For the first time, the operational feasibility of the solar photo-Fenton process at neutral pH in continuous flow has been tested for three consecutive days. The aim of the treatment was to remove of contaminants of emerging concern (CECs) from wastewater treatment plant secondary effluents. To this end, a 5 cm-deep raceway pond reactor was run in continuous flow mode and the degradation of the CECs present in real secondary effluents was monitored at their natural concentrations. To keep dissolved iron at neutral pH, ethylenediamine-N,N'-disuccinic acid (EDDS) was used to form the complex Fe(III)EDDS as an iron source for the photo-Fenton reactions. At pilot scale the effects of the Fe(III)EDDS molar ratio (11 and 12) and hydraulic residence time (HRT) (20 and 40 min) on CEC removal were studied. The best operating condition was 20 min of HRT, giving rise to a treatment capacity of 900 L m-2 d-1 with CEC removal percentages of around 60%. The reactant concentrations were 0.1 mM Fe(III)EDDS at a 11 M ratio and 0.88 mM H2O2. Under these operating conditions, the short-term stability of the process was also demonstrated, thus pointing out the potential of this solar technology as a tertiary treatment. Drying is one of the treatment techniques used for the dual purpose of safe disposal and energy recovery of faecal sludge (FS). Limited data are available regarding the FS drying process. In this paper the drying properties of FS were investigated using samples from ventilated improved pit (VIP) latrines and urine diversion dry toilets (UDDT) and an anaerobic baffle reactor (ABR) from a decentralized wastewater treatment systems. Moisture content, total solids content, volatile solids content, water activity, coupled thermogravimetry & differential thermal analysis (TGA-DTA) and calorific value tests were used to characterize FS drying. Drying kinetics and water activity measured at different moisture content during