https://www.selleckchem.com/products/vt107.html The contribution of dietary fatty acids to the quality of the meat and their path through the bovine organism is currently the subject of a lot of research. Stable isotope ratio analysis represents a powerful tool for this aim, one that has not been studied in depth yet. In this work, for the first time, the carbon isotopic ratios of six fatty acids (myristic 140, palmitic 160, stearic 180, oleic 181n-9, linoleic 182n-6 and linolenic 183n-3 acids) in different matrixes (diet, rumen, duodenal content, liver and loin) were analysed through gas chromatography combustion isotope ratio mass spectrometry. Moreover, the quantification of the single fatty acids was carried out, providing important information supporting the carbon isotopic ratio results. The variation in the concentration of the fatty acids in the different matrices depends on the chemical modifications they undergo in the sequential steps of the metabolic path. GC-C-IRMS turned out to be a powerful tool to investigate the fate of dietary fatty acids, providing information about the processes they undergo inside the bovine organism.The principal function of the ventricular conduction system is rapid electrical activation of the ventricles. The aim of this study is to conduct a morphometric study to pinpoint the morphological parameters that define cardiac conduction cells, allowing us to distinguish them from other cells. Five male horse hearts and five male dog hearts were used in the study. The hearts were fixed in a 5% formaldehyde solution. Histological sections of 5 μm thickness were acquired and stained with hematoxylin-eosin and Masson's trichrome and cardiac conduction cells and their junctions were identified by desmin, connexin 40 and a PAS method. We found statistically significant differences in cardiac conduction fibers density and thickness, which was much higher in horses than in dogs (p = 0.000 for both values). By comparing the measured parame