https://www.selleckchem.com/MEK.html ndamental biological implications for our comprehension of how the humoral immune system recognizes polysaccharide antigens, and in future knowledge-based vaccine design.Honeybee gut microbiota modulates the health and fitness of honeybees, the ecologically and economically important pollinators and honey producers. However, which processes drive the assembly and shift of honeybee gut microbiota remains unknown. To explore the patterns of honeybee gut bacterial communities across host species and geographical sites and the relative contribution of different processes (i.e., homogeneous selection, variable selection, homogeneous dispersal, dispersal limitation, and an undominated process) in driving the patterns, two honeybee species (Apis cerana and Apis mellifera) were sampled from five geographically distant sites along a latitudinal gradient, followed by gut bacterial 16S rRNA gene sequencing. The gut bacterial communities differed significantly between A. cerana and A. mellifera, which was driven by the interhost dispersal limitation associated with the long-term coevolution between hosts and their prokaryotic symbionts. A. mellifera harbored more diverse but less varied oting nutrient assimilation, detoxifying toxins, and resisting pathogens. Thus, understanding the processes that govern honeybee gut bacterial communities is imperative for better managing gut microbiota to improve honeybee health. However, little is known about the processes driving the assembly and shift of honeybee gut bacterial communities. This study quantitatively deciphers the relative importance of selection, dispersal, and undominated processes in governing the assembly of honeybee gut bacterial communities and explores how their relative importance varies across biological and spatial scales. Our study provides new insights into the mechanisms underlying the maintenance and shift of honeybee gut microbiota.The type VI secretion system (T6SS) is a ba