The blood-clotting protein fibrinogen has been implicated in host defense following Staphylococcus aureus infection, but precise mechanisms of host protection and pathogen clearance remain undefined. Peritonitis caused by staphylococci species is a complication for patients with cirrhosis, indwelling catheters, or undergoing peritoneal dialysis. Here, we sought to characterize possible mechanisms of fibrin(ogen)-mediated antimicrobial responses. Wild-type (WT) (Fib+) mice rapidly cleared S. https://www.selleckchem.com/Bcl-2.html aureus following intraperitoneal infection with elimination of ∼99% of an initial inoculum within 15 min. In contrast, fibrinogen-deficient (Fib-) mice failed to clear the microbe. The genotype-dependent disparity in early clearance resulted in a significant difference in host mortality whereby Fib+ mice uniformly survived whereas Fib- mice exhibited high mortality rates within 24 h. Fibrin(ogen)-mediated bacterial clearance was dependent on (pro)thrombin procoagulant function, supporting a suspected role for fibrin polymerization in this mechanism. Unexpectedly, the primary host initiator of coagulation, tissue factor, was found to be dispensable for this antimicrobial activity. Rather, the bacteria-derived prothrombin activator vWbp was identified as the source of the thrombin-generating potential underlying fibrin(ogen)-dependent bacterial clearance. Mice failed to eliminate S. aureus deficient in vWbp, but clearance of these same microbes in WT mice was restored if active thrombin was administered to the peritoneal cavity. These studies establish that the thrombin/fibrinogen axis is fundamental to host antimicrobial defense, offer a possible explanation for the clinical observation that coagulase-negative staphylococci are a highly prominent infectious agent in peritonitis, and suggest caution against anticoagulants in individuals susceptible to peritoneal infections.Fusion-associated small transmembrane (FAST) proteins are a diverse family of nonstructural viral proteins. Once expressed on the plasma membrane of infected cells, they drive fusion with neighboring cells, increasing viral spread and pathogenicity. Unlike viral fusogens with tall ectodomains that pull two membranes together through conformational changes, FAST proteins have short fusogenic ectodomains that cannot bridge the intermembrane gap between neighboring cells. One orthoreovirus FAST protein, p14, has been shown to hijack the actin cytoskeleton to drive cell-cell fusion, but the actin adaptor-binding motif identified in p14 is not found in any other FAST protein. Here, we report that an evolutionarily divergent FAST protein, p22 from aquareovirus, also hijacks the actin cytoskeleton but does so through different adaptor proteins, Intersectin-1 and Cdc42, that trigger N-WASP-mediated branched actin assembly. We show that despite using different pathways, the cytoplasmic tail of p22 can replace that of p14 to create a potent chimeric fusogen, suggesting they are modular and play similar functional roles. When we directly couple p22 with the parallel filament nucleator formin instead of the branched actin nucleation promoting factor N-WASP, its ability to drive fusion is maintained, suggesting that localized mechanical pressure on the plasma membrane coupled to a membrane-disruptive ectodomain is sufficient to drive cell-cell fusion. This work points to a common biophysical strategy used by FAST proteins to push rather than pull membranes together to drive fusion, one that may be harnessed by other short fusogens responsible for physiological cell-cell fusion.The noble gas isotope systematics of ocean island basalts suggest the existence of primordial mantle signatures in the deep mantle. Yet, the isotopic compositions of lithophile elements (Sr, Nd, Hf) in these lavas require derivation from a mantle source that is geochemically depleted by melt extraction rather than primitive. Here, this apparent contradiction is resolved by employing a compilation of the Sr, Nd, and Hf isotope composition of kimberlites-volcanic rocks that originate at great depth beneath continents. This compilation includes kimberlites as old as 2.06 billion years and shows that kimberlites do not derive from a primitive mantle source but sample the same geochemically depleted component (where geochemical depletion refers to ancient melt extraction) common to most oceanic island basalts, previously called PREMA (prevalent mantle) or FOZO (focal zone). Extrapolation of the Nd and Hf isotopic compositions of the kimberlite source to the age of Earth formation yields a 143Nd/144Nd-176Hf/177Hf composition within error of chondrite meteorites, which include the likely parent bodies of Earth. This supports a hypothesis where the source of kimberlites and ocean island basalts contains a long-lived component that formed by melt extraction from a domain with chondritic 143Nd/144Nd and 176Hf/177Hf shortly after Earth accretion. The geographic distribution of kimberlites containing the PREMA component suggests that these remnants of early Earth differentiation are located in large seismically anomalous regions corresponding to thermochemical piles above the core-mantle boundary. PREMA could have been stored in these structures for most of Earth's history, partially shielded from convective homogenization.The regulatory mechanisms of circadian rhythms have been studied primarily at the level of the transcription-translation feedback loops of protein-coding genes. Regulatory modules involving noncoding RNAs are less thoroughly understood. In particular, emerging evidence has revealed the important role of microRNAs (miRNAs) in maintaining the robustness of the circadian system. To identify miRNAs that have the potential to modulate circadian rhythms, we conducted a genome-wide miRNA screen using U2OS luciferase reporter cells. Among 989 miRNAs in the library, 120 changed the period length in a dose-dependent manner. We further validated the circadian regulatory function of an miRNA cluster, miR-183/96/182, both in vitro and in vivo. We found that all three members of this miRNA cluster can modulate circadian rhythms. Particularly, miR-96 directly targeted a core circadian clock gene, PER2. The knockout of the miR-183/96/182 cluster in mice showed tissue-specific effects on circadian parameters and altered circadian rhythms at the behavioral level.