https://www.selleckchem.com/products/RO4929097.html Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the degeneration of motor neurons. Between 12 and 20% of inherited cases and approximately 1-2% of all cases are caused by mutations in the gene encoding dismutase 1 (SOD1). Mutant SOD1 A4V (alanine to valine) induces endoplasmic reticulum (ER) stress, which is increasingly implicated as a pathway to motor neuron degeneration and death in ALS. However, it remains unclear how ER stress is induced by mutant SOD1 A4V. Previous studies have established that it is induced early in pathophysiology and it precedes the formation of mutant SOD1 inclusions. SOD1 contains four cysteine residues, two of which form an intra-subunit disulphide bond involving Cys-57 and Cys-146. The remaining two cysteines, Cys-6 and Cys-111, remain unpaired and have been implicated in mutant SOD1 aggregation. In this study, we examined the relationship between the SOD1 A4V cysteine residues and aggregation, ER stress induction and toxicity. We report here that mutation of Cys-6 and Cys-111 in mutant SOD1 A4V, but not Cys-57 or Cys-146, ameliorates ER stress, inclusion formation and apoptosis in neuronal cell lines. These results imply that protein misfolding, induced by Cys-6 and Cys-111, is required for these pathological events in neuronal cells.Down syndrome (DS) is the most common form of mental disability of genetic etiology. Nondisjunction of chromosome 21 is the leading cause of the syndrome. In general, free trisomy 21 cases originate from missegregation in maternal meiosis. Several reports have suggested an association between genetic variants in genes encoding folate metabolizing enzymes and the predisposition to chromosome missegregation. We have conducted a case-control study of 109 DS case mothers (MDS) and 248 control mothers (CM) to assess the association between DHFR del19bp polymorphism and an increased risk of bearing a DS child. Genomic DNA was