https://www.selleckchem.com/products/o6-benzylguanine.html 05) altered the soil C chemical composition mainly by affecting the aliphatic functional groups, resulting in a lower alkyl C/O-alkyl C ratio value. Compared to BF and SA, PA significantly (P less then 0.05) increased arbuscular mycorrhizal fungi (AMF) abundance. Soil enzyme activity, especially for the P and C cycle enzymes, was also affected by plant species with the highest geometric mean enzyme and hydrolase activity for the PA zone. We also found that soil C compositions and P pools were associated with microbial community structure and enzyme activity, respectively. However, little interaction between C and P was found on either soil microbial composition or soil enzyme activity variation. Further, microbial community composition was tightly correlated with the soil P compared to soil C chemistry, while enzyme activity showed more response with soil C chemistry compared to soil P pool changes.Herein, overall improvement in the electrochemical performance of manganese dioxide is achieved through fine-tuning the microstructure of partially Co-doped manganese dioxide nanomaterial using facile hydrothermal method with precise control of preparative parameters. The structural investigation exhibits formation of a multiphase compound accompanied by controlled reflections of α-MnO2 as well as γ-MnO2 crystalline phases. The morphological examination manifests the presence of MnO2 nanowires having a width of 70-80 nm and a length of several microns. The Co-doped manganese dioxide electrode displayed a particular capacitive behavior along with a rising order of capacitance concerning with increased cobalt ion concentration suitable for certain limits. The value of specific capacitance achieved by a 5% Co-doped manganese dioxide sample was 1050 F g-1 at 0.5 A g-1, which was nearly threefold greater than that achieved by a bare manganese dioxide electrode. Furthermore, Co-doped manganese dioxide nanocomposite elec