As a consequence, SMX was degraded to intermediates through five degradation pathways, and finally mineralized to inorganic molecules. The results indicate that Fe@C-800 has great potential to serve as a promising activator for persulfate-mediated environmental remediation.The overuse of herbicides has posed a threat to human health and the aquatic environment via DNA mutations and antibiotic gene resistance. Carbon-based cathodic electrochemical advanced oxidation has evolved as a promising technology for herbicide degradation by generating hydroxyl radicals (•OH). However, conventional electro-Fenton process relies on interaction of multiple species that adds to the system complexity and cost and narrows the working pH range. Herein, a series of porous carbon monoliths (PCMs) were developed as a "one-stop" platform for catalysis of the 2-electron ORR coupled with further catalytic reductive cleavage of H2O2 to produce •OH. A PCM prepared using 1,6-hexamethylene diamine (denoted as PCM-HDA) produced H2O2 at a level that was 374% higher than that obtained using commercially available carbon black at circum-neutral pH. Meanwhile, the generated H2O2 was catalytically decomposed to produce •OH. Based on these results, the PCM-HDA electrode achieved an 80 ± 2% degradation of napropamide in 60 min over the pH range of 4-10 at a mildly reducing potential, with a 69 ± 2% TOC reduction at circum-neutral condition in 2 h. This simplified system overcomes the system complexity and pH limitation of the conventional electron-Fenton processes.In Antarctic regions, the composition and metabolic activity of microbial assemblages associated with plastic debris ("plastisphere") are almost unknown. A macroplastic item from land (MaL, 30 cm) and a mesoplastic from the sea (MeS, 4 mm) were collected in Maxwell Bay (King George Island, South Shetland) and analyzed by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR), which confirmed a polystyrene foam and a composite high-density polyethylene composition for MaL and MeS, respectively. https://www.selleckchem.com/products/retatrutide.html The structure and function of the two plastic-associated prokaryotic communities were studied by complementary 16S ribosomal RNA gene clone libraries, total bacterioplankton and culturable heterotrophic bacterial counts, enzymatic activities of the whole community and enzymatic profiles of bacterial isolates. Results showed that Gamma- and Betaproteobacteria (31% and 28%, respectively) dominated in MeS, while Beta- and Alphaproteobacteria (21% and 13%, respectively) in MaL. Sequences related to oil degrading bacteria (Alcanivorax,Marinobacter) confirmed the known anthropogenic pressure in King George Island. This investigation on plastic-associated prokaryotic structure and function represents the first attempt to characterize the ecological role of plastisphere in this Antarctic region and provides the necessary background for future research on the significance of polymer type, surface characteristics and environmental conditions in shaping the plastisphere.With the potential biomedical applications of nanomaterials such as silver nanoparticles (SNPs), nanotoxicity concerns are growing, and the importance of NP and protein interactions is far from being addressed enough. Here, we identified the major binding protein on SNPs in blood as human serum albumin (HSA) using polyacrylamide gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. By comparing with the previous methods, we emphasized surface area concentration as a new dose metric to address the importance of NP curvature. SNPs interacted with cysteine and cystine, disrupting the secondary structure and conformation of HSA, and this tendency became stronger on small SNPs than large ones. The protein corona significantly alleviated the toxicity and decreased SNPs' internalization in a particle size-dependent manner, where more significant inhibition effects occurred on larger particles at the same area concentration. These findings may shed light on nanotoxicity and also the design of safe nanomaterials by a comprehensive preconsideration of the metrological method.The occurrence of microplastics (MPs) in various marine and freshwater matrices has attracted great attention. However, the effect of MPs in natural environment on the locomotor performance of aquatic biota is still controversial. Therefore, this meta-analysis was conducted, involving 116 effect sizes from 2347 samples, to quantitatively evaluate the alteration in locomotor behavior of aquatic organisms induced by MPs at environmentally relevant concentrations (≤ 1 mg/L, median = 0.125 mg/L). It was shown that MP exposure significantly inhibited the average speed and moved distance of aquatic organisms by 5% and 8% (p 0.05). The complex influence of MPs on the locomotor ability were characterized through random-effects meta-regression analyses, presenting size-, time-, concentration-dependent manners and multi-factors interactions. In addition, several physiological changes, including energy reserve reduction, metabolism disorder, gut microbiota dysbiosis, inflammation response, neurotoxic response, and oxidative stress, of aquatic organisms triggered by MP exposure at environmentally relevant concentrations were also provided, which might account for the MPs-induced locomotor activity decline.A novel biological carrier combining sponge and modified walnut shell biochar with Fe3O4 (MWSB@Fe3O4) was fabricated to achieve simultaneous removal of nitrate and diethyl phthalate (DEP). The optimal reaction conditions of the immobilized bioreactor were carbon to nitrogen (C/N) ratio of 1.5, Fe2+ concentration of 20 mg L-1, and hydraulic retention time (HRT) of 8 h. Under the optimal conditions and DEP concentration of 800 μg L-1, the highest removal efficiency of DEP and nitrate in the immobilized bioreactor with the novel biological carrier were 67.87% and 83.97% (68.43 μg L-1 h-1 and 1.71 mg L-1 h-1), respectively. Scanning electron microscopy (SEM) showed that the novel biological carrier in this study carried more bio-sediments which is closely related to the denitrification efficiency. The gas chromatography (GC) data showed that the nitrogen production of the immobilized bioreactor (99.85%) was higher than that of another experimental group (97.84%). Fluorescence excitation-emission matrix (EEM) and Fourier transform infrared spectrometer (FTIR) indicated the immobilized bioreactor emerged more extracellular polymeric substances (EPS) which was related to favourable biological stability under the DEP environment.