https://www.selleckchem.com/products/wnk-in-11.html Consistently, LO-OOA and MO-OOA in total contributed 59% to OA during non-fog-rain days and 56% to OA during fog-rain days, respectively. On the contrary, aq-OOA was mainly observed during fog-rain days, which increased dramatically from 2% of OA during non-fog-rain days to 19% of OA during fog-rain days with the mass concentration increasing accordingly from 0.3 μg m-3 to 2.5 μg m-3. Episodic analyses further highlighted the persistently high RH period with high aerosol liquid water content (ALWC) was the driving factor of aq-OOA formation, and high Ox condition could further enhance its formation. Meanwhile, air masses from east and southeast were much favorable for the formation of long-time fog-rain days, which facilitated aq-OOA production during summer in Xi'an.With the mass production and use of plastic products, which leads to their continuous entry into the water environment, the problem of environmental pollution has been paid more and more attention by scholars from different countries. In recent years, a large number of studies have focused on microplastics, but few on nanoplastics (NPs). However, NPs are smaller in size, have a higher affinity for cells, and surface and volume ratios are higher than those of microplastics. NPs may also enter biological tissues, blood and cells, which may cause greater potential harm to organisms. In this paper, firstly, the environmental fate of NPs accumulation and deposition is summarized, and further research is needed in the future; secondly, the current techniques for NPs extraction and characterization of NPs extraction and characterization are summarized. At present, the analytical methods of NPs are in the primary stage, and lack of standardized and accurate methods; finally, the toxic effects of NPs on biological morphology, behavior and reproduction are discussed. It has been found that the small size and high surface area of NPs make them more toxic to organ