https://www.selleckchem.com/products/Everolimus(RAD001).html Two-dimensional nanomaterials, such as graphene and molybdenum disulfide (MoS2), have recently attracted widespread attention as surface-enhanced Raman scattering (SERS) substrates. However, their SERS enhancement is of a smaller magnitude than that of noble metal nanomaterials, and therefore, the detection sensitivity still needs to be substantially improved for practical applications. Here, we present the first detailed studies on the effect of the (MoS2) interlayer distances on the SERS intensity enhancement. We find that MoS2 with smaller interlayer distances achieves an SERS enhancement factor as high as 5.31 × 105, which is one of the highest enhancement factors to date among the two-dimensional nanomaterial SERS sensors. This remarkable SERS sensitivity is attributed to the highly efficient charge transfer from MoS2 to probe molecules. The charge-transfer ability directly determines the variable quantity dz2 orbitals of Mo elements in the MoS2-molecule system and then tunes the Raman intensity of probe molecules. Our work contributes to reveal the influence of MoS2 interlayer spacing on SERS detection and to open a new way for designing a highly sensitive nonmetal SERS technology.A central theme in chemistry is the understanding of the mechanisms that drive chemical transformations. A well-known, highly cited mechanism in organometallic chemistry is the superexchange mechanism in which unpaired electrons on two or more metal centers interact through an electron pair of the bridging ligand. We use a combination of novel synthesis and computation to show that such interactions may in fact occur by a more direct mechanism than superexchange that is based on direct quantum entanglement of the two metal centers. Specifically, we synthesize and experimentally characterize a novel cobalt dimer complex with benzoquinoid bridging ligands and investigate its electronic structure with the variational two-elect