Electrical lighting design is usually based on the illumination design. Its main task is to ensure that the electricity and optical system can be normal, safe, reliable, and economically viable. In this paper, we propose a design and optimization method for outdoor illumination systems to generate relatively powerful light beams for far distances. The illumination systems are based on highly integrated LED modules instead of high intensity discharge lamps. The size of the LED light-emitting surface is 2.5mm×2.1mm, and the secondary optical elements are composed of a basic plano-convex lens and a Fresnel lens. The results of simulation demonstrate that the emission angle of the system is 1.1°, and the central illumination at 2500 m away is more than 1 lx. The total system is simple but practical, and several groups can be combined into a larger system. Two proof-of-concept prototypes producing acceptable illuminance are developed, and one is composed of four groups whose light is visible from 5000 m away. Both are fully waterproof and in a high degree of protection. The systems can provide up to 12 h of continuous lighting, and the operating temperature rise is less than 25°C. The results indicate that our design can be applicable for practical wild working sites.Photon momentum radiometers measure the force imparted by a reflected laser beam to determine the laser's optical power. This requires high-accuracy calibration of the force sensors using milligram and microgram mass artifacts. Calibrated test masses can therefore be used to provide traceability of these radiometers to the International System of Units, but low-noise calibration at these mass levels is difficult. Here, we present the improvement in calibration capability that we have gained from implementing a robotic mass delivery system. We quantify this in terms of the specific nuances of force measurements as implemented for laser power metrology.As a long-wavelength laser with strong energy storage capacity and large scale of amplification, the CO2 laser is considered an effective amplifier in the next-generation picosecond terawatt infrared laser system, but the pulse splitting effect caused by its discrete gain spectrum limits its behavior. In this paper, we have developed a specific model of a CO2 amplifier, which is optically and electrically pumped at the same time. The model is based on gas discharge that is combined with photon absorption, temperature, and wave equation. The proposed hybrid pumped CO2 amplifier scheme can increase the gain proportion of the sequence band transition (0002-1001, 0003-1002, etc.) from 12% to nearly 50% of the regular band and broaden the bandwidth of each line by over 15.8% by the overlap of the sequence band and regular band. The relative energy concentration of the first subpulse can be increased by up to 190% when the amplification factor reaches 103. The study on the model of a picosecond CO2 amplifier with electrical and optical pumping may contribute to the amplification of an ultrafast mid-infrared pulse to the terawatt or higher region.The computed tomography imaging spectrometer (CTIS) is a snapshot hyperspectral imaging system. Its output is a 2D image of multiplexed spatiospectral projections of the hyperspectral cube of the scene. Traditionally, the 3D cube is reconstructed from this image before further analysis. In this paper, we show that it is possible to learn information directly from the CTIS raw output, by training a neural network to perform binary classification on such images. The use case we study is an agricultural one, as snapshot imagery is used substantially in this field the detection of apple scab lesions on leaves. To train the network appropriately and to study several degrees of scab infection, we simulated CTIS images of scabbed leaves. This was made possible with a novel CTIS simulator, where special care was taken to preserve realistic pixel intensities compared to true images. To the best of our knowledge, this is the first application of compressed learning on a simulated CTIS system.We describe a pure rotational Raman lidar for measuring the all-day temperature profiles in the lower troposphere. The lidar is made up of a frequency-tripled NdYAG laser at 354.82 nm with ∼250mJ pulse energy at the 30 Hz repetition rate, a 200 mm receiving telescope, and narrow-band interference-filter-based detection optics. The lidar performance is shown by measured examples. Under clear sky conditions, with an integration time of 60 min and a vertical resolution of 90 m, the 1-σ statistical uncertainty does not exceed 1 K up to the altitude of ∼4.1km during nighttime, while the corresponding altitude is ∼2.3km at noon. The diurnal temperature variation characteristics have been revealed by the lidar measurements with the 1-σ statistical uncertainty 0.6km, the diurnal amplitude in the September period is less than that in the July period, but greater than that in the January period. The phase delays of the diurnal oscillations are ∼3h in the July period, 5-6 h in the September period, and 5-7 h in the January period compared to those at the surface, respectively. Both the diurnal amplitudes and phase delays indicate a possible seasonal dependence.The Ritchey-Common test is a widely used method for testing flat mirrors with a larger reference spherical mirror. However, with the increase in the size of the flat mirror, the fabrication of the spherical mirror becomes more time consuming and expensive. In this study, we developed a novel technique to test a large flat mirror with a smaller reference sphere using a dual subaperture stitching (DSS) method. One part of the DSS technique is a modified Ritchey-Common test, which uses a reference sphere smaller than the flat mirror. https://www.selleckchem.com/products/dn02.html The other part involves scanning along the centerline of the flat mirror. The former can be used to determine the surface form error (SFE), except for rotationally symmetric components, such as power and spherical aberrations, which can be measured by the latter. To perform the stitching process using a smaller reference sphere, the flat mirror was repeatedly rotated by a fixed angular step. One of the advantages of the rotation of the flat mirror is that it can be used to identify the errors resulting from the reference sphere, which do not vary during the rotation of the flat mirror.