Although intramuscular (i.m.) administration is the most commonly used route for licensed vaccines, subcutaneous (s.c.) delivery is being explored for several new vaccines under development. Here, we use rhesus macaques, physiologically relevant to humans, to identify the anatomical compartments and early immune processes engaged in the response to immunization via the two routes. Administration of fluorescently labeled HIV-1 envelope glycoprotein trimers displayed on liposomes enables visualization of targeted cells and tissues. Both s.c. and i.m. routes induce efficient immune cell infiltration, activation, and antigen uptake, functions that are tightly restricted to the skin and muscle, respectively. Antigen is also transported to different lymph nodes depending on route. However, these early differences do not translate into significant differences in the magnitude or quality of antigen-specific cellular and humoral responses over time. https://www.selleckchem.com/products/cb-839.html Thus, although some distinct immunological differences are noted, the choice of route may instead be motivated by clinical practicality. Rationally designing drugs that last longer in the face of biological evolution is a critical objective of drug discovery. However, this goal is thwarted by the diversity and stochasticity of evolutionary trajectories that drive uncertainty in the clinic. Although biophysical models can qualitatively predict whether a mutation causes resistance, they cannot quantitatively predict the relative abundance of resistance mutations in patient populations. We present stochastic, first-principle models that are parameterized on a large in vitro dataset and that accurately predict the epidemiological abundance of resistance mutations across multiple leukemia clinical trials. The ability to forecast resistance variants requires an understanding of their underlying mutation biases. Beyond leukemia, a meta-analysis across prostate cancer, breast cancer, and gastrointestinal stromal tumors suggests that resistance evolution in the adjuvant setting is influenced by mutational bias. Our analysis establishes a principle for rational drug design when evolution favors the most probable mutant, so should drug design. In this issue of Cell Reports, Oemer et al. (2020) define the acyl chain composition of cardiolipin and other lipid classes in murine tissues. They then employ artificial neural networks to predict mechanisms that govern cardiolipin tissue specificity, with implications for understanding cellular pathogenesis in human disease. Preeclampsia is a dangerous hypertensive disorder of pregnancy with known links to negative child health outcomes. Here, we review epidemiological and basic neuroscience work from the past several decades linking prenatal preeclampsia to altered neurodevelopment. This work demonstrates increased rates of neuropsychiatric disorders [e.g., increased autism spectrum disorder, attention deficit hyperactivity disorder (ADHD)] in children of preeclamptic pregnancies, as well as increased rates of cognitive impairments [e.g., decreased intelligence quotient (IQ), academic performance] and neurological disease (e.g., stroke and epilepsy). We also review findings from multiple animal models of preeclampsia. Manipulation of key clinical preeclampsia processes in these models (e.g., placental hypoxia, immune dysfunction, angiogenesis, oxidative stress) causes various disruptions in offspring, including ones in white matter/glia, glucocorticoid receptors, neuroimmune outcomes, cerebrovascular structure, and cognition/behavior. This animal work implicates potentially high-yield targets that may be leveraged in the future for clinical application. Some patients who are considered cortically blind due to the loss of their primary visual cortex (V1) show a remarkable ability to act upon or discriminate between visual stimuli presented to their blind field, without any awareness of those stimuli. This phenomenon is often referred to as blindsight. Despite the range of spared visual abilities, the identification of the pathways mediating blindsight remains an active and contentious topic in the field. In this review, we discuss recent findings of the candidate pathways and their relative contributions to different forms of blindsight across the lifespan to illustrate the varied nature of unconscious visual processing. Genes that are mutated in Autism Spectrum Disorders (ASD) can be classified broadly as either synaptic or developmental. But what if this is a false distinction? A recent spate of publications has provided evidence for developmental mechanisms that rely on neural activity for proper cortical development. Conversely, a growing body of evidence indicates a role for developmental mechanisms, particularly chromatin remodeling, during learning or in response to neural activity. Here, we review these recent publications and propose a model in which genes that confer ASD risk operate in signal transduction networks critical for both cortical development and synaptic homeostasis. Neural stem cells (NSCs) are multipotent progenitors that are responsible for producing all of the neurons and macroglia in the nervous system. In adult mammals, NSCs reside predominantly in a mitotically dormant, quiescent state, but they can proliferate in response to environmental inputs such as feeding or exercise. It is hoped that quiescent NSCs could be activated therapeutically to contribute towards repair in humans. This will require an understanding of quiescent NSC heterogeneities and regulation during normal physiology and following brain injury. Non-mammalian vertebrates (zebrafish and salamanders) and invertebrates (Drosophila) offer insights into brain repair and quiescence regulation that are difficult to obtain using rodent models alone. We review conceptual progress from these various models, a first step towards harnessing quiescent NSCs for therapeutic purposes. Childhood maltreatment increases the likelihood of developing anxiety disorders in humans. Early life adversity (ELA) paradigms in rodents produce lasting increases in avoidant and inhibitory responses to both immediate and nonspecific threats, collectively referred to as defensive behaviors. This approach provides an opportunity to thoroughly investigate the underlying mechanisms, an effort that is currently under way. In this review, we consider the growing literature indicating that ELA alters the rhythmic firing of neurons in brain regions associated with defensive behavior, as well as potential neuronal, glial, and extracellular matrix contributions to functional changes in this circuitry. We also consider how ELA studies in rodents may inform us about both susceptible and resilient outcomes in humans.