https://www.selleckchem.com/products/pkr-in-c16.html Uranium (U) is both chemically toxic and radioactive. Uranium mill tailings (UMTs) are one of the most important sources of U contamination in the environment, wherein the mechanisms that control U release from UMTs with different granularities have not yet been well understood. Herein, the release behaviours and underlying release mechanisms of U from UMTs with five different particle size fractions ( less then 0.45, 0.45-0.9, 0.9-2, 2-6 and 6-10 mm) were studied with a well-defined leaching test (ANS 16.1) combined with geochemical and mineralogical characterizations. The results showed that the most remarkable U release unexpectedly emerged from UMT2-6 mm; in contrast, the smallest particle size UMT less then 0.45 mm contributed to the least U release. The predominant mechanism of U release from UMT2-6 mm was the oxidative dissolution of U-bearing sulfides, while abundant gypsum present in UMT less then 0.45 mm inhibited U release. The study highlights the importance of combined geochemical and mineralogical investigation when performing leaching tests of mineral-containing hazardous materials such as UMTs with consideration of particle size effects. The findings also indicate that elevating the content of gypsum and avoiding the oxidation of sulfides can effectively help immobilize and minimize the residual U release from the UMTs. The dissolved oxygen concentration of the world's oceans has systematically declined by 2% over the past 50 years, and there has been a notable commensurate expansion of the global oxygen minimum zones (OMZs). Such wide-scale ocean deoxygenation affects the distribution of biological communities, impacts the physiology of organisms that may affect their capacity to absorb and process contaminants. Therefore, the bioaccumulation efficiencies of three contrasting radionuclides, 110mAg, 134Cs and 65Zn were investigated using controlled aquaria in the blue mussel Mytilus edulis under th