https://www.selleckchem.com/products/tg003.html The MI scaffold-treated DCs (MI DCs) showed an increase in the expression of tolerogenic markers such as surface immunoglobulin-like transcript 3 (ILT-3) and secreted interleukin-10 (IL-10), with a simultaneous decrease in maturation markers such as CD86 and secreted interferon-γ (IFN-γ). In cell culture studies, these MI DCs were able to suppress T-cell proliferation. This approach is expected to enhance the generation of endogenous regulatory DCs when applied in vivo. This technology serves as a basis for future immunotherapeutic applications in the autoimmunity and allogeneic therapies. It also shows that empirical mathematical modeling can be used to engineer scaffold designs for distinct temporal release of one or more immunomodulators.Polylactic acid (PLA) is one of the biodegradable materials that has been used in the areas of surgical healing lines, cancer treatment, and wound healing. However, the application of PLA is still rather limited due to its high hydrophobicity and poor antibacterial activity. In order to enhance the antifouling and antibacterial performances of PLA, here we modified the surface of PLA with various sizes of hydrogel micropatterns in negative or positive mode using plasma treatment, the photomask technique, and UV-graft polymerization. The hydrogel micropatterns consist of poly(ethylene glycol) diacrylate (PEGDA), poly(2-methacryloyloxyethylphosphorylcholine) (PMPC), and poly(methacryloyloxyethyltrimethylammonium chloride) (PDMC). Compared to PLA, the patterned PLA (PLA-PMPC/PDMC/PEGDA) shows obviously enhanced antifouling and antibacterial activities. For PLA-PMPC/PDMC/PEGDA with either positive or negative micropatterns, the antifouling and antibacterial properties are gradually increasing with decreasing the size of micropatterns. Compared with PLA-PMPC/PDMC/PEGDA bearing positive and negative micropatterns in the same size, the PLA-PMPC/PDMC/PEGDA with negative micropatterns exhibi